
Elizabethtown College
JayScholar
Mathematical Science: Student Scholarship &
Creative Works Mathematical Science

Spring 2018

Improvements to Correlation Attacks Against
Stream Ciphers with Nonlinear Combiners
Brian Stottler
Elizabethtown College, stottlerb@etown.edu

Follow this and additional works at: https://jayscholar.etown.edu/mathstu

Part of the Mathematics Commons

This Student Research Paper is brought to you for free and open access by the Mathematical Science at JayScholar. It has been accepted for inclusion in
Mathematical Science: Student Scholarship & Creative Works by an authorized administrator of JayScholar. For more information, please contact
kralls@etown.edu.

Recommended Citation
Stottler, Brian, "Improvements to Correlation Attacks Against Stream Ciphers with Nonlinear Combiners" (2018). Mathematical
Science: Student Scholarship & Creative Works . 1.
https://jayscholar.etown.edu/mathstu/1

https://jayscholar.etown.edu?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jayscholar.etown.edu/mathstu?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jayscholar.etown.edu/mathstu?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jayscholar.etown.edu/math?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jayscholar.etown.edu/mathstu?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jayscholar.etown.edu/mathstu/1?utm_source=jayscholar.etown.edu%2Fmathstu%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kralls@etown.edu

Improvements to Correlation Attacks Against Stream

Ciphers with Nonlinear Combiners

Brian Stottler

Elizabethtown College

Spring 2018

1 Background

1.1 Stream Ciphers

Throughout the multi-thousand year history of cryptography, a huge number of encryption

methods have been developed to protect sensitive information. Many of these techniques do

not live up to modern standards of cryptographic security, but there are still a vast number

of options among those that do. In reality, the optimal choice of cipher depends heavily

on both the type of data being encrypted and the context in which it will be transferred

or used. For example: if the data is produced all at once or in large segments, a block-

based cipher such as AES may be appropriate. In a field such as real-time communication,

however, there is a need to perform high-speed, bit-by-bit encryption of messages with a

priori unknown length. These needs are addressed by a class of symmetric-key substitution

ciphers collectively known as stream ciphers.

The high-level operation of a stream cipher is quite simple: for each bit (binary value 0

or 1) of plaintext data fed into the system, a corresponding bit of encrypted ciphertext is

produced. To examine the details of this encryption, however, a formal notion of addition

for bits is required. If x and y are individual bits, we define the operation denoted by ⊕

(often called “exclusive or” or XOR) according to the following table:

x y x⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

Equivalently, x⊕y = 1 whenever x 6= y and x⊕y = 0 whenever x = y. XOR is equivalent to

addition modulo 2 and is thus both associative and commutative. Given a secret binary key

of the same length as our plaintext, we can now encrypt in a straightforward manner. To

do so, we XOR each bit of the plaintext data with the corresponding bit of the key. As an

1

example, consider the following encryption operation performed on a short binary plaintext.

Note that we will represent binary sequences in our examples in the form b1b2b3 . . . bn, and

that performing an XOR operation on two-equal length sequences is equivalent to performing

an XOR operation between every pair of corresponding bits.

0011001100110011 (plaintext)

⊕ 1001101110101001 (key)

1010100010011010 (ciphertext)

Although the above sequences are presented in entirety, there is no dependence between the

encryption operations performed at each position. That is to say, the encryption could easily

have been performed separately on each pair of plaintext and key bits as they were produced.

Conveniently, the same key used for encryption can be used to decrypt the ciphertext

(this makes the cipher symmetric). Because x⊕ x = 0 for any value of x, the plaintext can

be recovered by adding the key to the ciphertext. That is,

ciphertext⊕ key = (plaintext⊕ key)⊕ key = plaintext⊕ 0 = plaintext.

To continue our example, we have

1010100010011010 (ciphertext)

⊕ 1001101110101001 (key)

0011001100110011 (plaintext).

While this method of combining keys with messages is straightforward, constructing

secure keys is a challenging problem. In an ideal world, we would always endeavor to perform

a one-time pad, in which a truly-random key of exactly the same length as the plaintext is

used. Indeed, Claude Shannon famously proved this type of cipher to be unbreakable in his

1949 paper [2]. In practice, the difficulty of creating and transmitting truly-random keys

is prohibitive – if a secure channel through which to communicate such keys existed, that

channel would presumably be used to send the messages themselves. Instead, stream ciphers

2

attempt to approximate the security of a one-time pad by beginning with a relatively short

key and recursively generating a keystream of arbitrary length. Although the key is used to

initialize the system, the ciphertext is produced by XORing the plaintext and the keystream.

The initial key data in this context is known as a seed. In the stream ciphers of interest in

our research, the mechanism used to generate keystream bits based on the seed is known as

a linear feedback shift register.

1.2 Linear Feedback Shift Registers

Stream ciphers - at least those of interest in our research - make use of one or more linear

feedback shift registers (LFSRs) to recursively generate keys. An LFSR is a fixed-width

array of bits on which a shift operation can be performed. Each LFSR has an “input side”

and an “output side,” and performing a shift causes every bit in the LFSR to move one

position closer to the output side. As a result, the bit that was closest to the output side is

produced as output. In order to keep the LFSR from exhausting its initial supply of bits,

bits from predetermined positions in the array are XOR’d together prior to the shift taking

place. After each bit has been shifted, the bit resulting from the previous XOR operation

is inserted at the input side of the register. The positions involved in this operation are

referred to as the taps, and the recursion that they specify is referred to as the rule for the

register.

A visual example helps to clarify this definition. Since we will later distinguish between

the bits produced by different registers using subscripts, we will make the unconventional

choice of indexing the bits in our examples using superscripts. Hence, bt would describe the

bit b produced as output following the t-th shift of a register. Consider the example register

shown in figure 1. In order to perform the first shift, we compute b9 = b8⊕ b4⊕ b3⊕ b1. Each

bit is then moved one position to the left, causing b1 to be produced as output. Finally, b9

is inserted at the right-hand side of the register. More generally, the recursive rule for this

register is bn = bn−1⊕ bn−5⊕ bn−6⊕ bn−8. The specific bits stored within a register at a given

3

Figure 1: An 8-bit LFSR before and after a shift operation is performed. The newly inserted
bit is b9 = b8 ⊕ b4 ⊕ b3 ⊕ b1.

time are referred to as its fill. The diagram in figure 2 shows the output of the same register

with initial fill (1, 1, 0, 1) over the course of three shifts.

Figure 2: A 4-bit register undergoing three shifts.

Since our goal is to generate arbitrarily long, pseudo-random keys using LFSRs, it is of

interest to maximize the period of the output they produce. Because an LFSR can only

take on a finite number of states and since each state is determined only by the previous

state, it should be apparent that the output of an LFSR must eventually become periodic.

By considering the number of possible fills for an LFSR of length k, we can see that the

maximum possible period of its output is 2k − 1. Note that an all-zero fill is excluded, since

any recursive rule given all-zero parameters will indefinitely produce zeros. Although we

omit the details, the period of a register’s output is largely determined by its recursive rule.

For each possible register length k, there is at least one recursive rule that will generate

4

output with period 2k − 1 (assuming a non-zero initial fill is used). We will thus assume

that all registers employed in the cryptosystems we discuss have been selected in order to

generate maximal-period output.

2 Combiner Functions

While individual LFSRs may efficiently generate pseudorandom output streams, their linear-

ity makes cryptanalysis extremely simple. If an attacker possesses knowledge of a register’s

length, tap configuration, and a relatively small segment of corresponding output stream,

determining the initial fill of the register is reduced to an easily solvable system of linear

equations. Even combining the output of multiple, unrelated LFSRs with XOR does not add

substantial complexity to this problem. Hence, modern stream ciphers include additional

mechanisms to add nonlinear elements to the key generation process. Our research is focused

specifically on the use of nonlinear combiner functions to fulfill this need.

When making use of such a combiner, multiple LFSRs are configured to shift simultane-

ously, each outputting a single bit used in the argument of a Boolean function. We will define

a generator as a set of n LFSRs whose output at each shift is fed directly into a nonlinear

Boolean function f of n variables. At each time t, the first register is shifted to produce

bit xt1, the second register is shifted to produce bit xt2, and so on. The output of the entire

generator at time t is then computed as f(xt1, x
t
2, . . . , x

t
n). For brevity, we often denote the

vector (xt1, x
t
2, . . . , x

t
n) by xt and denote the output of the generator as f(xt). More generally,

we use F2 to denote the field of integers modulo 2 (single bits), and Fn
2 to denote n-length

vectors of elements from F2. When we are not concerned about the specific time at which

a vector xt or values xt1, x
t
2, . . . , x

t
n were produced, we will further simplify our notation to

x and x1, x2, . . . , xn. The diagram in figure 3 depicts a generator containing four registers

with outputs given as arguments to combiner function f . We will always assume that an

attacker has complete knowledge of a generator except for the initial fills of its registers.

5

Figure 3: A generator sourcing input from four LFSRs.

This both simplifies our analysis and is usually the case in practice. Hence, the key required

to perform encryption and decryption with a given generator is a list of initials fills and the

registers they correspond to. While systems of this form are nontrivial to cryptanalyze, later

discussion of correlation attacks against these generators will expose an even stricter set of

requirements on the function f .

3 Correlation Attacks

We now discuss the method of cryptanalysis introduced by T. Siegenthaler in his 1985

paper [3]. Although Siegenthaler described a ciphertext-only attack, we will reduce the

complexity of our development by assuming access to an excerpt of keystream produced

by the generator in question. If this were not the case, it would be necessary to test each

candidate keystream produced during the attack by XORing it with the ciphertext. Each

candidate plaintext produced by this process could then be somehow scored for similarity

to the expected language of the true plaintext. Siegenthaler also assumed that the tap

configuration of each register was unknown, an assumption we discard for simplicity and

practicality. Our goal is thus as follows: Given all details of a generator except for the fills

of its registers, and given an excerpt of keystream produced by the generator, we will seek

to recover the correct initial fills used to generate that keystream.

Suppose that the generator to be attacked contains n registers of lengths r1, r2, . . ., rn

6

and an n-variable, nonlinear combiner function f . For convenience we will denote a set of

registers as an ordered list of integers corresponding to those registers’ indices within the

generator. To begin, we let R = (1, 2, . . . , n) describe the set of all registers in the given

generator. On top of knowledge of its registers, suppose also that we have N consecutive

bits of keystream produced by that generator using unknown initial fills. In order to test

hypotheses about those fills, we first create our own copy of the generator, referred to as

the test generator. Naively, we might then try every possible combination of register fills in

our test generator, each time generating a sequence of N output bits and testing them for

equality with the known keystream. Unfortunately, this entails
∏

(2ri − 1) possible tests.

Instead, we would prefer a means of attacking and recovering the initial fill of each register

independently, for a total of
∑

(2ri − 1) possible tests. This is not always possible, and in

general the goal of each attack is to recover the fills for some subset of the registers in R.

Throughout the paper, we will let A ⊂ R be the set of registers with known or previously

recovered fills and B ⊂ R be the set of registers targeted in the current attack. A broad

outline of the procedure for performing such an attack is as follows: find a function q that

depends only on the registers in A ∪ B (that is, on their corresponding variables) and for

which a non-trivial correlation (detailed below) exists between f and q. Although q only

depends on the registers in A ∪ B, we find it convenient to describe it as a function of all

n registers. Instead of f , we will use q as the combiner function for our test generator.

Figure 4 depicts a generator with four registers alongside a test generator depending on only

two of those registers. Suppose that xt = (xt1, x
t
2, . . . , x

t
n) is the unknown “correct” input

to f produced by the original generator at time t. Suppose also that yt = (yt1, y
t
2, . . . , y

t
n) is

the input to q produced by our test generator at the same time. The previously mentioned

correlation between f and q must be such that each possible pair of the form (f(xt), q(yt))

occurs with different probability depending on whether or not the correct initial fills have

been chosen for our test generator. We will formalize this procedure as a simple hypothesis

test, after which we will discuss how to find the best q functions for this purpose. The

7

Figure 4: A generator with combiner function f alongside a test generator with combiner
function q, which depends on only y2 and y4.

question of determining which groups of registers are vulnerable to attack is tied to the

choice of q function and will also be addressed at the end of this section.

3.1 Correlation Attack without Prior Knowledge

First, we consider attacks in which no prior knowledge about register fills is being leveraged.

That is, situations in which we are attacking a group of registers with unknown fills without

making use of previously recovered fills for other registers.

As before, we consider f and q as n-variable functions, with q depending only on the

registers in A ∪ B. Initially, we will assume that we have no prior knowledge and thus that

A = ∅ and that q depends only on the registers in B. Later, we will also allow q to depend on

previously-attacked registers of known fill. If Bn is the set of Boolean functions over Fn
2 , then

f, q ∈ Bn. The two hypotheses under consideration are H0 and Ha. H0 is the hypothesis that,

at any time t, the inputs xt,yt ∈ Fn
2 to f and q, respectively, are effectively independent.

Ha is the hypothesis that q(xt) = q(yt) at every time t, meaning that the components of

xt and yt corresponding to the registers in A ∪B are equal. We refrain from asserting that

xt = yt, since we may not be generating output from the registers that q doesn’t depend

on. If we have chosen the wrong initial fills for the registers in A ∪ B, we would desire not

to reject H0. If we have chosen the correct fills, we would desire to reject H0 in favor of Ha.

This necessitates the development of a statistic that adequately distinguishes between the

two hypotheses.

8

Frequently, we find it useful to perform counting operations on the truth tables of com-

biner functions. For this we reserve the notation C(. . .), where the argument is an indicator

of the quantity being counted. In the interest of concise formulas, we will often represent

these quantities with notation like C(g = i) instead of C(x ∈ Fn
2 : g(x) = i). In that vein, for

any function g ∈ Bn and any bit i ∈ F2, we define C(g = i) to be the number of arguments

x ∈ Fn
2 for which g(x) = i. Equivalently,

C(g = i) =
∑
x∈Fn

2

g(x)⊕ i⊕ 1.

If h is another function in Bn, we define C(g = i, h = j) to be the number of distinct

arguments x ∈ Fn
2 for which g(x) = i and h(x) = j. A crucial point here is that C(g =

i, h = j) counts the number of times where g and h take the specified values given the same

argument. Equivalently,

C(g = i, h = j) =
∑
x∈Fn

2

(g(x)⊕ i⊕ 1)(h(x)⊕ j ⊕ 1).

Under H0, where x and y are assumed to be independent and uniformly chosen from Fn
2 ,

we have

P (f(x) = i) =
C(f = i)

2n
and P (q(y) = j) =

C(q = j)

2n
.

Thus,

P (f(x) = i ∩ q(y) = j) = P (f(x) = i)P (q(y) = j) =
C(f = i)C(q = j)

22n
.

Under Ha, where it is assumed that the components of x and y corresponding to A∪B are

equal, we have

P (f(x) = i ∩ q(y) = j) =
C(f = i, q = j)

2n
.

For convenience, we use pij(H0) and pij(Ha) to indicate the probability P (f(x) = i∩q(y) = j)

9

under the specified hypothesis. That is,

pij(H0) =
C(f = i)C(q = j)

22n
(1)

pij(Ha) =
C(f = i, q = j)

2n
(2)

Next, we define the probability perturbation θ by

θ = p11(Ha)− p11(H0).

Using this definition and the basic concepts of probability, we can derive that

p00(Ha) = p00(H0) + θ, p01(Ha) = p01(H0)− θ,
p10(Ha) = p10(H0)− θ, p11(Ha) = p11(H0) + θ.

We often find it convenient and intuitive to display these probabilities in tables like those

depicted in figure 5. It is reasonable to expect that the two cases can be distinguished

H0: q(y)
0 1

f(x)
0 p00(H0) p01(H0)
1 p10(H0) p11(H0)

Ha: q(y)
0 1

f(x)
0 p00(H0) + θ p01(H0)− θ
1 p10(H0)− θ p11(H0) + θ

Figure 5: The probability distributions for pairs of the form (f(x), q(y)) under H0 and Ha.
Note that θ = p11(Ha)− p11(H0).

between if and only if θ 6= 0, and that the statistical power of an attack will increase with

|θ|.

Let us consider an example in which f(x1, x2, x3, x4) = x1 +x2 +x3x4, the registers under

attack are specified by B = (1, 2), and q(x1, x2, x3, x4) = x1 +x2. The truth tables for f and

10

q are shown below:

x1 x2 x3 x4 f(x) q(x)

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 1 1

0 1 0 1 1 1

0 1 1 0 1 1

0 1 1 1 0 1

1 0 0 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 1 0

Since C(f = 1) = C(f = 0) = 23 and C(q = 1) = C(q = 0) = 23, equation 1 yields the

probabilities (all 1
4
) in the H0 table shown below. Using equation 2, we can compute the

corresponding values in the Ha table. Since p11(Ha) = 3
8
, we have that θ = 3

8
− 1

4
= 1

8
,

suggesting that we can successfully perform an attack on registers 1 and 2.

H0: q(y)

0 1

f(x)
0 1/4 1/4

1 1/4 1/4

Ha: q(y)

0 1

f(x)
0 3/8 1/8

1 1/8 3/8

3.2 Correlation Attack with Prior Knowledge

Suppose that we are seeking to recover the initial fills for the registers in B ⊂ R and that

we have previously recovered the initial fills in another subset A ⊂ R. Although A and

B are conceptually sets of registers, we again find it notationally useful to treat them as

ordered lists of register indices. Consider any group of k registers S ⊂ R – we denote S by

S = (i1, i2, . . . ik), where the ij are integers corresponding to the desired registers (hence,

0 < i1 < i2 < . . . < ik ≤ n). Given a vector x ∈ Fn
2 , we will often find it convenient to put

11

constraints on the components of x corresponding to some subset of the registers. We use

x|S to denote the k-length vector (xi1 , xi2 , . . . , xik) of components from x corresponding to

the registers in S. We refer to the vector x|S as the restriction of x to S. If s ∈ Fk
2 is a

vector of fixed values, we will write x|S = s to imply xi1 = s1, xi2 = s2, . . . xik = sk.

We now consider a function q ∈ Bn depending only on the registers in A ∪ B. Because

the input yt to q at time t is partially determined by the “known” registers in A, our null

hypothesis H0 can no longer assume that the “correct” inputs xt are completely independent

from yt. Instead, we must assume that the components of x and y corresponding to the

registers inA are equal (i.e. that x|A = y|A), and that all other components are independent.

This affects the probability pij(H0), which we now adjust accordingly. We define the tuple

count C(g = i | S = s) to be a count of the number of arguments x ∈ Fn
2 for which x|S = s

and g(x) = i. In order to compute pij(H0) while taking the equal components of x and y into

account, we sum the conditional probabilities that f(x) = q(y) given that x|A = y|A = a

for each value of a ∈ F|A|2 . Hence,

pij(H0) =
∑

a∈F|A|
2

P (f(x) = i | A = a)P (q(y) = j | A = a)P (A = a)

=
∑

a∈F|A|
2

(
C(f = i | A = a)

2n−|A|

)(
C(q = j | A = a)

2n−|A|

)(
1

2|A|

)

=
1

22n−|A|

∑
a∈F|A|

2

C(f = i | A = a)C(q = j | A = a)

(3)

Note that if A = ∅, this expression reduces to the probability given in equation 1. The tables

shown in figure 5 still apply in this case, with the caveat that equation 3 must be used to

compute pij(H0).

Continuing our above example with f(x) = x1⊕x2⊕x3x4, we now assume that the fills of

registers 1 and 2 have been successfully recovered, and that our next goal is to attack register

3. In this case, A = (1, 2) and B = (3). In order to leverage the known information about

registers 1 and 2, we would like to choose a q function that depends exactly on registers 1,

12

2, and 3. Although conventional practice is to use the linear combination of outputs from

those registers, we will choose q(x) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 to better illustrate the

need for equation 3. The truth tables of f and this new q are shown below, alongside the

corresponding probability tables:

x1 x2 x3 x4 f(x) q(x)

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 0 0

1 1 0 0 0 1

1 1 0 1 0 1

1 1 1 0 0 0

1 1 1 1 1 0

H0: q(y)

0 1

f(x)
0 5/16 3/16

1 7/16 1/16

Ha: q(y)

0 1

f(x)
0 1/4 1/4

1 1/2 0

Note that θ = −1/16 and that the probabilities in the H0 table differ from those that would

have been produced by equation 1. We are not aware of any prior authors explicitly observing

or addressing the differences that occur in this case.

3.3 Test Statistic

Although there are a number of valid statistics for distinguishing H0 from Ha, we will focus

on the classical statistic presented by Siegenthaler [3]. When generalized to support multi-

13

register attacks, that statistic is defined to be

γ = N − 2
N∑
t=1

f(xt)⊕ q(yt),

where f(xt) is the given keystream output at time t and q(yt) is the output from the test

generator at time t.

Consider the generic hypothesis H ∈ {H0, Ha} and let pf 6=q(H) = p01(H) + p10(H). Note

that

pf 6=q(Ha) = p01(Ha) + p10(Ha) = p01(H0) + p10(H0)− 2θ = pf 6=q(H0)− 2θ.

If we define Y =
∑N

t=1 f(xt) ⊕ q(yt), then Y is a binomial random variable with N trials

and probability of success pf 6=q(H). Hence,

E(Y) = Npf 6=q(H),

V (Y) = Npf 6=q(H)(1− pf 6=q(H)).

Denoting E(γ | H) by µ(H) and V (γ | H) by σ2(H), we thus have

µ(H0) = N − 2Npf 6=q(H0),

σ2(H0) = 4Npf 6=q(H0)(1− pf 6=q(H0)).

and

µ(Ha) = N − 2Npf 6=q(Ha)

= N − 2Npf 6=q(H0) + 4Nθ,

σ2(Ha) = 4Npf 6=q(Ha)(1− pf 6=q(Ha))

= 4N(pf 6=q(H0)− 2θ)(1− pf 6=q(H0) + 2θ).

Because Y is binomial andN is often large, we approximate γ as a normal random variable. It

14

should be clear that µ(H0) = µ(Ha) and σ2(H0) = σ2(Ha) when θ = 0, making it impossible

to distinguish between the two distributions.

As is generally the case with hypothesis testing, we would like to either be aware of the

type I error (α) and type II error (β) for a fixed number of keystream bits N , or to determine

N based on values of α and β. If we consider a rejection region for H0 of the form γ ≥ γ∗

for θ > 0 and γ ≤ γ∗ for θ < 0, then

α = 1− Φ

(∣∣∣∣∣γ∗ − µ(H0)√
σ2(H0)

∣∣∣∣∣
)

(4)

and

β = 1− Φ

(∣∣∣∣∣γ∗ − µ(Ha)√
σ2(Ha)

∣∣∣∣∣
)
. (5)

Solving these equations for γ∗ yields

γ∗ = sgn(θ)
√
σ2(H0)Φ

−1(1− α) + µ(H0) (6)

and

γ∗ = − sgn(θ)
√
σ2(Ha)Φ

−1(1− β) + µ(Ha), (7)

respectively. By combining either equations 5 and 6 or equations 4 and 7, we can derive that

N =

(
Φ−1(1− β)

√
pf 6=q(Ha)(1− pf 6=q(Ha)) + Φ−1(1− α)

√
pf 6=q(H0)(1− pf 6=q(H0))

)2
4θ2

.

(8)

This is the number of keystream bits required to achieve desired α and β errors.

We now return to our previous example where f(x) = x1 ⊕ x2 ⊕ x3x4. During our first

attack on registers 1 and 2 in which we chose q(x) = x1 ⊕ x2, for which pf 6=q(H0) = 1/2,

pf 6=q(Ha) = 1/4, and θ = 1/8. If we fix α = 2−20 and β = 2−20, we can use equation 8 to

15

derive the following value for N :

N =

(
Φ−1(1− 2−20)

√
1
4

(
3
4

)
+ Φ−1(1− 2−20)

√
1
2

(
1
2

))2
4
(
1
8

)2
≈ 316.

Hence, to perform the attack while achieving our desired levels of α and β, we need at least

316 bits of known keystream data.

We can perform the same calculations for our extended example in which the now-

recovered fills of registers 1 and 2 are used to attack register 3. With our choice of q(x) =

1⊕ x1⊕ x2⊕ x3⊕ x1x3⊕ x2x3, we can compute pf 6=q(H0) = 5/8 and pf 6=q(Ha) = 3/4 . With

the same α and β as before,

N =

(
Φ−1(1− 2−20)

√
5
8

(
3
8

)
+ Φ−1(1− 2−20)

√
3
4

(
1
4

))2
4
(
− 1

16

)2
≈ 1221.

In this case, 1221 bits of keystream would be required to perform the desired attack. It should

not be surprising that this number is‘’ larger than in the first case, since θ is significantly

smaller.

4 Correlation-Immune Functions

Thus far, we have not provided a method for determining which sets of registers A and

B will admit q functions that allow meaningful correlation attacks. An extremely useful

concept in making this determination is that of correlation immunity, a property first defined

by Siegenthaler in 1984 [4]. Consider again a function f ∈ Bn and the set of registers

R = (1, 2, . . . , n). f is said to be correlation immune of order k if for every subset S ⊂ R of

16

Figure 6: Distributions of γ under H0 (red) and Ha (blue) for f(x) = x1 ⊕ x2 ⊕ x3x4 and
q(x) = x1 ⊕ x2 with N = 50 bits. The red shaded area indicates α = 2−4 and the blue
shaded area is the corresponding power, 1− β ≈ 0.99.

k registers and an unknown value x ∈ Fn
2 , the probability that x|S = s given a value f(x)

is equal for all choices of s ∈ Fk
2. That is, the value of f(x) is statistically independent of

the value of x|S. For example, if f is correlation immune of order 3 and S = (1, 3, 4) then

there must be equally many values of x ∈ Fn
2 for which x|S = (0, 1, 0) and f(x) = 1 as for

which x|S = (1, 1, 0) and f(x) = 1.

To see why this property prevents correlation attacks, consider a function f ∈ Bn, with f

being correlation immune of order k. Suppose also that q depends on the k or fewer variables

in some S ⊂ R and that q(x) = j exactly when x|S is one of s1, s2, . . . , sm ∈ F|S|2 . For every

x ∈ Fn
2 , this means that

pij(Ha) = P (f(x) = i | q(x) = j)P (q(x) = j)

=
m∑
i=1

P (f(x) = i | x|S = si)P (x|S = si)

=
m∑
i=1

P (f(x) = i)P (x|S = si)

= P (f(x) = i)P (q(x) = j)

= pij(H0).

Hence, a correlation attack against f and using q will not succeed.

17

4.1 The Walsh Transform

Luckily, a more practical method exists for determining the correlation immunity of a func-

tion f . First, note that we consider the dot product of two vectors a, b ∈ Fn
2 to be defined

as a · b = a1b1⊕ a2b2⊕ . . .⊕ anbn. Next, we define the Walsh transform W (f) at ω ∈ Fn
2 by

W (f)(ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x.

In effect, the term f(x) ⊕ ω · x measures how similar f is to the linear combination of

variables specified by ω · x. Exponentiating with a base of −1 maps values of 0 and 1 to

values of 1 and −1, respectively. Hence, the transform can be equivalently defined as

W (f)(ω) = C(f = ω · x)− C(f 6= ω · x),

where C(f = ω · x) is a count of how many distinct values x ∈ Fn
2 make f(x) equal to the

linear function ω · x and C(f 6= ω · x) is its complement

18

Consider the Walsh transform of f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3x4 depicted below:

ω C(f = ω · x) C(f 6= ω · x) W (f)(ω)

0000 8 8 0

0001 8 8 0

0010 8 8 0

0100 8 8 0

1000 8 8 0

0011 8 8 0

0101 8 8 0

0110 8 8 0

1010 8 8 0

1100 12 4 8

0111 8 8 0

1011 8 8 0

1101 12 4 8

1110 12 4 8

1111 4 12 −8

Note that we have ordered the values of ω by their Hamming weight, or the number of 1s in

each vector. From a theorem presented by Xiao and Massey [5], we have the important result

that a function g ∈ Bn is correlation immune of order k if and only if its Walsh transform is

0 for all values of ω ∈ Fn
2 with Hamming weight of k or less. Hence, the function f whose

Walsh transform is shown above is correlation immune of order 1. In practical terms, this

means that no correlation attack is feasible against two-or-fewer registers from a generator

with combiner f .

4.2 Prior Results for Choosing q

While the Walsh transform gives us useful information about which groups of registers can

be successfully attacked, we still lack a means of determining which combiner q for our test

generator will admit the largest value of θ. As mentioned previously, the convention is to

always choose a linear function of the variables/registers in question. This intuition is not

19

entirely baseless, as demonstrated by Canteaut and Trabbia in their 2000 paper [1]. The

paper first defines a notion of t-resilience: A function f ∈ Bn is said to be t-resilient if it

is correlation immune of order t and if C(f = 1) = C(f = 0). Canteaut proves that, given

a generator with a t-resilient combiner f , the optimal choice of combiner q to use during a

correlation attack on a group B = (i1, i2, . . . , it, it+1) of t + 1 registers is the affine function

q(x) = xi1 ⊕ xi2 ⊕ . . .⊕ xit+1 ⊕ c. The value of the constant term c is determined as follows:

Let 1B be the bit vector in Fn
2 for which the i-th component is 1 if and only if i ∈ B. Then

c = 0 if W (f)(1B) > 0 and c = 1 otherwise.

Since our example combiner f(x) = x1 ⊕ x2 ⊕ x3x4 is both balanced and correlation

immune of order 2, it is also 2-resilient. Hence, we are guaranteed that the optimal choice

of q for a correlation attack on the registers in B = (1, 2) is q(x) = x1⊕ x2. Whether or not

a linear q function is always optimal for a group of more than t + 1 registers appears to be

an open question. Although it does not answer this question universally, our work provides

a systematic method of determining the optimal q function to use in any stage of an attack.

We also introduce a novel test method that in certain cases allows for an attack with 100%

statistical power.

5 Our Results

5.1 A Method for an Optimal Choice of q

Our procedure for choosing an optimal q function requires carefully expanding the formula

for θ. To do so, we first partition the set R of all registers into three disjoint subsets. As

before, let A be the set of registers with previously recovered fill and let B be the set of

registers targeted in the current attack. We also let C be the set of registers not present in

A ∪ B. We use f(a, b, c) to indicate the value f(x) where x|A = a, x|B = b, and x|C = c.

q(a, b, c) will have similar meaning. Since q only depends on the registers in A∪B, however,

it must be the case that for a fixed a and b, q(a, b, c) = q(a, b,d) for all c,d ∈ F|C|2 . We

20

will thus use the notation q(a, b) to denote any and all of these values. To de-clutter our

notation, we also write sums of the form
∑

s∈F|S|
2

simply as
∑

s wherever the usage of s

makes its parent set clear. We now proceed to derive our expansion of θ.

Using the fact that

p11(Ha) =
C(f = 1, q = 1)

2n

=
1

2n

∑
a

∑
b

∑
c

f(a, b, c)q(a, b, c)

=
1

2n

∑
a

∑
b

q(a, b)
∑
c

f(a, b, c)

and

p11(H0) =
1

22n−|A|

∑
a

C(f = 1 | A = a)C(q = 1 | A = a)

=
1

22n−|A|

∑
a

(∑
d

∑
c

f(a,d, c)

)(∑
b

∑
c

q(a, b, c)

)

=
1

22n−|A|

∑
a

(∑
d

∑
c

f(a,d, c)

)(
2|C|

∑
b

q(a, b)

)

=
1

2n+|B|

∑
a

∑
b

q(a, b)

(∑
d

∑
c

f(a,d, c)

)

we can derive that

θ = p11(Ha)− p11(H0)

=
1

2n

∑
a

∑
b

q(a, b)
∑
c

f(a, b, c)− 1

2n+|B|

∑
a

∑
b

q(a, b)

(∑
d

∑
c

f(a,d, c)

)

=
1

2n+|B|

∑
a

∑
b

q(a, b)

[∑
c

(
2|B|f(a, b, c)−

∑
d

f(a,d, c)

)]

=
1

2n+|B|

∑
a

∑
b

F (a, b)q(a, b),

21

where

F (a, b) =
∑
c

(
2|B|f(a, b, c)−

∑
d

f(a,d, c)

)
.

Because we know that the coefficient of each q(a, b) term is F (a, b), we can choose each value

of q(a, b) (that is, the values of q(x) for all x where x|A = a and x|B = b) to maximize the

overall expression. Hence, we let q(a, b) = 1 if F (a, b) > 0 and let q(a, b) = 0 if F (a, b) < 0.

The value of q(a, b) can be chosen arbitrarily if F (a, b) = 0, although we generally prefer to

make q a linear function whenever possible.

Using this procedure, it should be possible to confirm the optimal choices of q for our

earlier examples with f(x) = x1 ⊕ x2 ⊕ x3x4. With respect to the initial attack on registers

1 and 2, we have A = ∅, B = (1, 2), and C = (3, 4). The following table shows each value of

F (a, b) for this scenario and our corresponding choices for q(a, b):

a b F (a, b) q(a, b)

∅ (0, 0) −4 0

∅ (0, 1) 4 1

∅ (1, 0) 4 1

∅ (1, 1) −4 0

22

In other words, the truth table for q must be

x1 x2 x3 x4 f(x) q(x)

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 1 1

0 1 0 1 1 1

0 1 1 0 1 1

0 1 1 1 0 1

1 0 0 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 1 0

which corresponds to the expected (via Canteaut’s result) linear function q(x) = x1 ⊕ x2

with θ = 1/8. If we perform the same procedure when A = (1, 2), B = (3), and C = (4), we

derive the following values of F :

a b F (a, b) q(a, b)

(0, 0) (0) −1 0

(0, 0) (1) 1 1

(0, 1) (0) 1 1

(0, 1) (1) −1 0

(1, 0) (0) 1 1

(1, 0) (1) −1 0

(1, 1) (0) −1 0

(1, 1) (1) 1 1

Although we omit the full 4-variable truth table of q, the resulting function is q(x) =

x1 ⊕ x2 ⊕ x3 with θ = 1/8.

23

5.2 The Impossible Pairs Test

For the same combiner f(x) = x1 ⊕ x2 ⊕ x3x4, recall our previous example attack in which

A = (1, 2), B = (3), and q(x) = 1⊕x1⊕x2⊕x3⊕x1x3⊕x2x3. The probability tables under

each hypothesis are reproduced below.

H0: q(y)

0 1

f(x)
0 5/16 3/16

1 7/16 1/16

Ha: q(y)

0 1

f(x)
0 1/4 1/4

1 1/2 0

Although a classical correlation attack is possible in this case, the fact that (f(x), q(y)) =

(0, 0) occurs with probability 0 under Ha suggests a different type of test. In general, we

refer to a pair of bits (b1, b2) for which pb1b2(H0) 6= 0 and pb1b2(Ha) = 0 as an impossible pair

and, assuming such a pair can be found, we perform an impossible pair test.

We will first focus on the details of exploiting an impossible pair (b1, b2) given combiners

f, q ∈ Bn that produce it. Suppose we are given sets of registers A,B ⊂ R with their usual

meanings and N bits of keystream, denoted as the sequence {st} = s1, s2, . . . , sN (recall that

we use a superscript to indicate the time/index of each output). For each combination of

initial fills assigned to the registers in B, we produce an equal length sequence {pt} from our

test generator. If at any time i between 0 and N it is the case that (si, pi) = (b1, b2), then we

reject the fills under consideration. We can have complete confidence in this decision, since

such a pair will never be produced if the correct fills have been chosen. Thus, this resulting

test has the rare advantage of 100% statistical power.

Although the type II error for this test is 0, we may still wish to fix one of α or N and to

compute the other. Under H0, the impossible pair (b1, b2) occurs with probability pb1b2(H0).

In this case, the number of occurrences of (b1, b2) is a binomial random variable in N trials.

24

Hence,

α = P
(
(f(xt), q(yt)) 6= (b1, b2) for any t ≤ N

)
= P ((b1, b2) first occurs at time N + 1 or later)

=
∞∑

t=N+1

(1− pb1b2(H0))
t−1pb1b2(H0)

= (1− pb1b2(H0))
N

(9)

and

N =
lnα

ln(1− pb1b2(H0))
. (10)

Continuing the preceding example, performing an impossible pair test for (1, 1) while

achieving an α of 2−20 would require at least

N =
ln 2−20

ln 15
16

≈ 215

bits of keystream data. Using the same q function and fixing N = 215 and α = 2−20, the

attack performed with Siegenthaler’s statistic has a type II error of β ≈ 0.186 ≈ 2−2.43

(computed using equations 5 and 6). Even when using the known-optimal q function q(x) =

x1 ⊕ x2 ⊕ x3 with the same N and α, the standard attack yields β ≈ 0.0015 ≈ 2−9.37. This

illustrates the fact that impossible pairs attacks are worth considering whenever they are

available.

5.3 Finding Impossible Pairs

Once again, let f ∈ Bn be a combiner that depends on all registers/variables in R. The

following definitions and results provide a means of determining if and when a given set of

registers will be susceptible to an impossible pairs attack.

25

Definition 1. We say the set S ⊂ R with |S| = k has the all-cases property if for every

s ∈ Fk
2, both C(f = 0 | S = s) > 0 and C(f = 1 | S = s) > 0.

If f(x) = x1 ⊕ x2 ⊕ x3x4, for example, and S = (1, 2), we have the following table of tuple

counts:
s C(f = 0 | S = s) C(f = 1 | S = s)

(0, 0) 3 1

(0, 1) 1 3

(1, 0) 3 1

(1, 1) 1 3

Hence, S has the all cases property. Note that R itself never has the all-cases property, since

for any x ∈ Fn
2 , either f(x|R) = f(x) = 0 or f(x|R) = f(x) = 1, but not both.

Proposition 1. If S ⊂ R has the all-cases property, then every subset of S also has the

all-cases property.

Proof. Let S = (i1, i2, . . . , ik) have the all-cases property. Since any subset of S can be

constructed by removing a finite number of elements from S, we will simply prove that if

|S| = k > 1, any subset of S with k − 1 elements also has the all-cases property. The more

general result follows from induction.

Let S ′ ⊂ S be such that |S ′| = k − 1, and let ij be the single remaining element

in S − S ′. For any b = (b1, b2, . . . , bk−1) ∈ Fk−1
2 , we can define a0,a1 ∈ Fk

2 by a0 =

(b1, b2, . . . , bj−1, 0, bj, bj+1, . . . , bk−1) and a1 = (b1, b2, . . . , bj−1, 1, bj, bj+1, . . . , bk−1). Since both

a0|S ′ = b and a1|S ′ = b, we see that

C(f = 0 | S ′ = b) = C(f = 0 | S = a0) + C(f = 0 | S = a1) > 0,

and

C(f = 1 | S ′ = b) = C(f = 1 | S = a0) + C(f = 1 | S = a1) > 0.

26

Definition 2. We say S ⊂ R has the all-cases property of order k if every subset S ′ ⊂ S

with |S ′| = k possesses the all-cases property. We say f itself possesses the all-cases property

of order k if R does.

Note that by the previous proposition, if S ⊂ R has the all-cases property of order k

then it also has the all-cases property of order j wherever 1 ≤ j ≤ k.

Consider a function q ∈ Bn for use in our test generator. If f and q have impossible pair

(b1, b2) for some b1, b2 ∈ F2, then we call q a pair-prevention function. We also refer to the

set of registers on which q depends (always A ∪B in our attacks) as depend(q).

Lemma 1. Let S ⊂ R. If S possesses the all-cases property, then any pair-prevention

function q with depend(q) ⊂ S must be constant.

Proof. Let S ⊂ R be such that S possess the all-cases property. Suppose that q is a pair-

prevention function depending only on the variables in S and let (b1, b2) be the corresponding

impossible pair.

Let a ∈ Fn
2 , and let b = a|S. Since q depends only on the variables in S, it must be

that for any other a′ ∈ Fn
2 with a′|S = b we have q(a) = q(a′). By the all-cases property,

we know C(f = b1 | S = b) > 0, implying that there is an a′ ∈ Fn
2 with a′|S = b such that

f(a′) = b1. Since q prevents (b1, b2), we must have q(a′) = b2 ⊕ 1 and thus q(a) = b2 ⊕ 1.

Since q takes the value b2 ⊕ 1 for every a ∈ Fn
2 , it must be constant.

Lemma 2. If S ⊂ R does not possess the all-cases property, then there is a nonconstant

pair-prevention function q ∈ Bn with depend(q) ⊂ S.

Proof. Let S ⊂ R be a set without the all-cases property. Then there must exist p ∈ F2 and

b ∈ F|S|2 such that C(f = p | S = b) = 0. Since f is nonconstant and depends on all of its

variables, there must also be values b′ ∈ F|S|2 for which C(f = p | S = b′) > 0.

Let a ∈ Fn
2 . If C(f = p | S = a|S) = 0, define q(a) = 0. Otherwise, define q(a) = 1.

By the preceding logic regarding f , q must be nonconstant. Since the value of q(a) depends

27

only on the value of a|S, we must have depend(q) ⊂ S. Additionally the pair (p, 0) never

occurs, since f(a) = p implies that C(f = p | S = a|S) > 0 which implies that q(a) = 1.

The construction of q used in this proof is made systematic in the following section. Com-

bining the two lemmas, we have the following useful criterion for the existence of nonconstant

pair-prevention functions:

Theorem 1. Let S ⊂ R. A nonconstant pair-prevention function q ∈ Bn with depend(q) ⊂ S

exists if and only if S does not have the all-cases property.

5.4 The P -Transform

When attempting to find pair-prevention functions for a given Boolean function f , we care

only about the “presence” of any given tuple count – not its actual value. Although comput-

ing the exact tuple counts for a given subset of R gives us this information, we really only

care about the extrema - values for which either the f = 0 tuple count or the f = 1 tuple

count is 0. Since the specific values at which these tuple counts are 0 completely determine

the pair-prevention functions admitted, it would be ideal to both locate these values and

construct the truth tables of our desired functions in a single operation.

We introduce the following notation to assist with such an operation.

Definition 3. Given a ∈ Fk
2, define v(a) = a12

0 + a22
1 + . . . + ak2k−1 (in Z). We refer to

v(a) as the integer value of a.

Definition 4. Given a ∈ Fk
2, define δ(a) to be the vector of length 2k for which δ(a)i = 1

when i = v(a) + 1 and δ(a)i = 0 otherwise.

Definition 5. Given S ⊂ R, we define m(S) to be a vector of length |R| = n such that

m(S)i = 1 when i ∈ S and m(S)i = 0 otherwise. We refer to m(S) as the mask of S.

For example, if a = (0, 1, 1) we have v(a) = 1102 = 6 and δ(a) = (0, 0, 0, 0, 0, 0, 1, 0). Also,

if |R| = 5 and S = (1, 3), then m(S) = (1, 0, 1, 0, 0).

28

We now introduce an operation that, for a given set of variables S and a given value

p ∈ F2, computes a general form of the truth table for every pair-prevention function q

corresponding to impossible pairs of the form (p, b2) (for both b2 = 0 and b2 = 1) and

depending only on the variables in S. Note that ∨ corresponds to the Boolean “or” operation

defined by the following truth table:

x y x ∨ y
0 0 0

0 1 1

1 0 1

1 1 1

Definition 6. Let p ∈ F2 and S ⊂ R. For x ∈ Fn
2 , we define the case indicator function

Cf (S, p,x) as follows:

Cf (S, p,x) = 1⊕ [1⊕ p⊕ f(x)] [1⊕ f(x)⊕ f(xm(S))]

= [p⊕ f(x)] ∨ [f(x)⊕ f(xm(S))] ,

where xm(S) is the component-wise product of the vectors x and m(S).

The two equivalent definitions are provided for clarity – the first is written directly in terms

of field operations and the second is more concise and practical for implementation. This

function is equal to 1 exactly when any two of f(x), f(xs), and p differ.

Definition 7. Let p ∈ F2 and S ⊂ R. We define the P transform as follows:

Pf (S, p) =
∏
x∈Fn

2

1⊕ Cf (S, p,x) δ(x|S),

where 1 is the length 2|S| vector with every component equal to 1.

For any b ∈ F|S|2 , Pf (S, p)v(b) = 0 exactly when there exists an a ∈ Fn
2 such that a|S = b

and either f(a) 6= f(am(S)) or f(a) 6= p. Equivalently, Pf (S, p)v(b) = 1 exactly when the

29

tuple count C(f = p ⊕ 1 | S = b) = 0. Furthermore, Pf (S, p) can be considered as the

truth table for a function q′ of the variables in S, defined by letting q′(y) = Pf (S, p)v(y)+1 for

each y ∈ F|S|2 . It can be then be extended to an equivalent n-variable function q by defining

q(x) = q′(x|S) for each x ∈ Fn
2 . This function will prevent pairs of the form (p⊕ 1, 1). The

function q(x)⊕ 1 will similarly prevent pairs of the form (p⊕ 1, 0).

Remark 1. Although the Boolean operation “or” is a less trivial vector operation than mul-

tiplication, we can use it to create an equivalent definition of the P -transform that may be

more practical for understanding or implementation:

1⊕
∨
x∈Fn

2

Cf (S, p,x) δ(x|S)

Furthermore, the multiplication by δ(x|S) could potentially be described in terms of a binary

shift operation.

Note that every pair-prevention function q′ ∈ B|S| depending only on the variables in S

will have a truth table vector of the following form: Pf (S, p) with any of its 1 values (but

not all) optionally replaced by 0, and with a constant function 1 optionally added to it. The

P -transform values for f(x) = x1 ⊕ x2 ⊕ x3x4 are depicted in Tables 1 and 2.

6 Conclusion

In this paper, we have reviewed the existing knowledge surrounding correlation attacks on

LFSR-based stream ciphers with nonlinear combiners. Although these details are well es-

tablished, we are not aware of other authors who explicitly detail the probabilities involved

in each possible case. Along with these results, we have introduced a concrete method for

deriving the optimal q function to use in any classical correlation attack. In addition to this,

we have introduced a novel attack procedure that exploits the existence of “impossible pairs”

for f and q functions that admit them. Finally, we have developed the theory necessary to

30

p = 0:

S Pf (S, 0) Corresponding q function
∅ 0
(1) 00
(2) 00
(3) 00
(4) 00
(1, 2) 0000
(1, 3) 0000
(1, 4) 0000
(2, 3) 0000
(2, 4) 0000
(3, 4) 0000
(1, 2, 3) 10000010 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3
(1, 2, 4) 10000010 1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x1x4 ⊕ x2x4
(1, 3, 4) 00000000
(2, 3, 4) 00000000
(1, 2, 3, 4) 1110000100011110 1⊕ x1 ⊕ x2 ⊕ x3x4

Table 1: The vectors produced by the P -transform with f(x) = x1 ⊕ x2 ⊕ x3x4 and p = 0.
When the resulting vector is non-constant, the corresponding q function is included.

p = 1:

S Pf (S, 1) Corresponding q function
∅ 0
(1) 00
(2) 00
(3) 00
(4) 00
(1, 2) 0000
(1, 3) 0000
(1, 4) 0000
(2, 3) 0000
(2, 4) 0000
(3, 4) 0000
(1, 2, 3) 00101000 x1 ⊕ x2 ⊕ x1x3 ⊕ x2x3
(1, 2, 4) 00101000 x1 ⊕ x2 ⊕ x1x4 ⊕ x2x4
(1, 3, 4) 00000000
(2, 3, 4) 00000000
(1, 2, 3, 4) 0001111011100001 x1 ⊕ x2 ⊕ x3x4

Table 2: The vectors produced by the P -transform with f(x) = x1 ⊕ x2 ⊕ x3x4 and p = 1.
When the resulting vector is non-constant, the corresponding q function is included.

determine exactly when it will be possible to exploit such pairs. This included the introduc-

tion of the P -transform in order to explicitly construct pair-preventing q functions for all

susceptible subsets of the registers. Future work may focus on relating the all-cases property

to other, better known algebraic properties of Boolean functions, and on the potential use

of multiple, independent pair-prevention functions within a single attack.

31

References

[1] Anne Canteaut and Michaël Trabbia. “Improved Fast Correlation Attacks Using Parity-

Check Equations of Weight 4 and 5”. In: Advances in Cryptology – EUROCRYPT 2000

(2000), pp. 573–588. doi: https://doi.org/10.1007/3-540-45539-6_40.

[2] C. E. Shannon. “Communication theory of secrecy systems”. In: The Bell System Tech-

nical Journal 28.4 (1949), pp. 656–715. doi: https://doi.org/10.1002/j.1538-

7305.1949.tb00928.x.

[3] T. Siegenthaler. “Decrypting a Class of Stream Ciphers Using Ciphertext Only”. In:

IEEE Transactions on Computers 34.1 (1985), pp. 81–85. doi: https://doi.org/10.

1109/TC.1985.1676518.

[4] Thomas Siegenthaler. “Correlation-immunity of nonlinear combining functions for cryp-

tographic applications (Corresp.)” In: IEEE Transactions on Information Theory 30.5

(1984), pp. 776–780. doi: https://doi.org/10.1109/TIT.1984.1056949.

[5] G-Z. Xiao and James L. Massey. “A spectral characterization of correlation-immune

combining functions”. In: IEEE Transactions on information theory 34.3 (1988), pp. 569–

571. doi: https://doi.org/10.1109/18.6037.

32

http://dx.doi.org/https://doi.org/10.1007/3-540-45539-6_40
http://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/https://doi.org/10.1109/TC.1985.1676518
http://dx.doi.org/https://doi.org/10.1109/TC.1985.1676518
http://dx.doi.org/https://doi.org/10.1109/TIT.1984.1056949
http://dx.doi.org/https://doi.org/10.1109/18.6037

	Elizabethtown College
	JayScholar
	Spring 2018

	Improvements to Correlation Attacks Against Stream Ciphers with Nonlinear Combiners
	Brian Stottler
	Recommended Citation

	Background
	Stream Ciphers
	Linear Feedback Shift Registers

	Combiner Functions
	Correlation Attacks
	Correlation Attack without Prior Knowledge
	Correlation Attack with Prior Knowledge
	Test Statistic

	Correlation-Immune Functions
	The Walsh Transform
	Prior Results for Choosing q

	Our Results
	A Method for an Optimal Choice of q
	The Impossible Pairs Test
	Finding Impossible Pairs
	The P-Transform

	Conclusion

