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Abstract

The Hill cipher is a classical block cipher based upon matrix multiplication. In 2007, Bauer and Millward
completed a ciphertext-only attack in which they recovered the individual rows of the encrypting matrix to
reduce the work previously necessary to recover the entire matrix at one time. In 2015, Leap et al. improved
Bauer and Millward’s attack by changing the scoring statistic to the Index of Coincidence, making it possible to
score all members of entire classes of rows by testing a single member of each class and decreasing the necessary
work by a factor of φ(L), where φ is the Euler totient function and L is the length of the alphabet. This paper
presents further improvements by focusing attention on subsequences of the putative plaintext instead of the
rows of the matrix, thereby making the search more efficient and more amenable to implementation on multiple
computer processors.
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1 Literature Review

The Hill Cipher, created by Lester Hill in 1929, is a cipher that has not been successfully decrypted in a ciphertext

only attack [3]. Numerous attempts have been made over the years by various cryptanalysts, but to date no

complete successes have been achieved for all block sizes of the key matrix when analyzing ciphertext only. The

Hill cipher is entirely vulnerable if the plaintext is known. First efforts towards cryptanalysis were made by Jack

Levine [8, 9, 10], a mathematics professor at North Carolina State University and cryptanalyst for the government

during World War II. Later, Craig Bauer and Katherine Millward, a professor of mathematics at York College

and his student, made further advancements in analyzing the Hill Cipher via examining its key row by row [1].

Two years following Bauer and Millward’s advancements, Dae Hyun Yum and Pil Joong Lee, professors at Pohang

University of Science and Technology furthered prior research through enhancing scoring analysis of potential

solutions to the Hill Cipher [12] . Most recently, Tom Leap and Tim McDevitt, professors at Elizabethtown

College along with two students, Kayla Novak and Nicolette Siermine, offered further improvements on the Bauer-

Millward attack to allow analysis of larger matrices and the use of more efficient scoring [7].

1.1 Levine

Jack Levine was one of the first individuals to delve into cryptanalysis of the Hill Cipher. In his 1961 paper,

Elementary Cryptanalysis of Algebraic Cryptography [9], he recognized two different potential situations posed by

the Hill cipher. He started with having knowledge that the alphabet length is 26 and knowledge that the numbers

corresponding to those given letters are as such: A=1, B=2...Y=25, Z=0. He also assumed knowledge of a portion

of plaintext. Here, he does not know what portion of ciphertext with which the known plaintext corresponds or

the key matrix which he calls matrix A. In order to solve the first problem of trying to determine the location of

the known plaintext, Levine considered the system of congruences where

Ciβ ≡ αβ1Pi1 + ...+ αβnPin mod 2

all modulus two such that the plain and ciphertext sequences become binary sequences. This is enciphering the

plain block Pi1...Pin into cipher block Ci1...Cin where n is the block size, Pβi are the plaintext characters in block

i and Cβ are the ciphertext characters. Levine’s example worked as such where he assumed an alphabet ‘a’ to ‘z’

corresponding to integers 1 through 26:

Plaintext: CRY PTO GRA PHY . . .

Numerical Plaintext: 3 18 25 16 20 15 . . .



Plaintext Mod 2: 1 0 1 0 0 1 . . .

Ciphertext: SUI RIM AYG DIK . . .

Numerical Ciphertext: 19 21 9 18 9 13 . . .

Ciphertext Mod 2: 1 1 1 0 1 1

Using the single digit scheme such that

000 = 0, 001 = 1, 010 = 2, 011 = 3, 100 = 4, 101 = 5, 110 = 6, 111 = 7

Making:

Plaintext: 5 1 . . .

Ciphertext: 7 3 . . .

Modulo two, each block of n characters is converted to an integer in {0, 1, . . . , 2n − 1} which is the binary

value of the block. So in the above example we are working with blocks of 3, making the values of the block range

from 0 to 7. This then creates a pattern of binary value pairings where each plaintext binary value will map to

the same ciphertext binary value and vice versa for the duration of the text, i.e. for the above example, 5 will

always map to 7 and 1 will always map to 3 and vice versa. This causes the same pattern to be present in both

the plain and ciphertext such that if the plaintext follows the pattern ‘abbd’ the the ciphertext will follow the

same pattern, but for the plaintext ‘a’ may correspond to 5, ‘b’ to 7 and ‘d’ to 3, but in the ciphertext this would

translate to ‘a’ being 7, ‘b’ as 5 and ‘d’ as 1. This allowed Levine to obtain preliminary locations for the plaintext

by comparing the patterns within the plain and ciphertext. The problem with this approach arose when there

were longer messages, shorter probable texts or larger key matrices making it more challenging to pair the plain

and cipher text to only one possible solution.

In response to the second situation that Levine posed, determining the key matrix A, he assumes that the

location of the given plaintext has already been determined. He also uses knowledge that the determinant must

be relatively prime to 26, the alphabet length, because otherwise the solution will not be unique and an inverse

would not be possible to assist with decryption. Additionally, he assumes that A2 = I, the identity matrix. He

then set up the equation

P = A−1C

where P is the plaintext matrix, A−1 is the inverse of the key matrix, which can be inverted to retrieve the original
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key, and C is the ciphertext matrix. The congruences resulting from this relationship allows him to solve for the

values of the key matrix [9].

In Levine’s next paper, Some Applications of High-Speed Computers to the Case n = 2 of Algebraic Cryptog-

raphy [8], he proposed the idea that high speed computers are capable of deciphering the Hill cipher exhaustively

in the simple case of a 2× 2 key matrix. For this situation, a known-plaintext attack, the ciphertext is known as

is the plaintext and the size of the key matrix leaving only the elements of the decryption key matrix as unknown.

Here, as the size of the key matrix increases, so does the complexity of cryptanalysis. His first attempt at crypt-

analysis considered all constructions of the inverse key matrix of two forms, both of which satisfy the key matrix

constraints:

Type 1 =

(
a b
c −a

)
Type 2 =

(
a b
c a

)
These two forms present 740 possible mod 26 matrices to be considered. A 1960’s machine was able to run through

all of these in approximately 30 minutes to identify which was the correct for decipherment.

The second method to determine A is dependent upon trigraphs present in the given plaintext. Levine assumes

that a type one key matrix has been used and that the plaintext contains three consecutive letters with another

character before or behind them to create a string of characters of length four. Based upon the assumption that it

is a type one matrix, along with the formation of the string of four characters, multiple congruences can be formed

between the plaintext and ciphertext characters using the key, or encryption marix. To solve these congruences,

one can look at the congruences using the same key matrix elements (i.e. ‘a’ and ‘b’) and form a matrix using these

congruences whose determinant is zero mod 26. This relationship is able to be constructed whether the string of

plaintext characters is padded with an unknown character before or after the known triple of plaintext. A list of

possible combinations for the elements of the key matrix are generated from matrices formed from the congruences

and are dependent on whether the equations are solved mod 13 or mod 2. Levine also suggests compiling a list

of the highest frequency English trigraphs to be tested in every ciphertext position for the consecutive characters

where the correct solution will be easily visible from assumptions made prior to testing the trigraph. In general,

Levine found that the longer the ciphertext, the fewer the number of trigraphs it was necessary to test.[8]

1.2 Bauer-Millward

After briefly reviewing the basics of matrix encryption necessary to understand the Hill cipher, Bauer and Millward

review previous attacks on the cipher made by Jack Levine. Specifically, they reference Levine’s use of involutory

matrices for the key matrix so that the key matrix and its inverse are the same. In order to reinforce the need for
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their research, they present the statistics for number of invertible matrices mod 26, the length of their alphabet,

which increase exponentially as the size of their key matrix increases. See Table 1.

Of Levine’s prior research, Bauer and Millward emphasized the case for which a 2×2 involutory matrix is used

for encryption where there are only 740 matrices to check. They also analyzed his probable word attack in which

the location of a probable word within the ciphertext is known and the researchers are attempting to recover the

key matrix. Levine showed in his work that the location does not actually need to be known, but can be easily

recovered using knowledge that the product of two integers is odd if and only if both integers are odd and the

sum of two integers is odd if only one of the integers is odd. Levine’s presentation of use of a specific key matrix

of the form (
even odd
odd even

)
made it easier to analyze four different enciphering possibilities which were dependent upon the numerical com-

ponents of the letters being encoded. For example, the enciphering matrix would send text of form(
even
even

)
to another pair of letters having the same form where as a set of text of form(

even
odd

)
would be sent to a set of text in the form (

odd
even

)
and vice versa for the opposite situation. For example, enciphering ‘MA’ corresponding to numerical equivalents

(12 0) is considered the even-even case and would therefore result in an even-even form for ciphertext. On the

other hand, ‘AT’ corresponds to (0 19) which is an even-odd situation and will therefore result in ciphertext of

the form odd-even. This creates an easy to detect pattern if we name the even-even form 0, even-odd form 1,

odd-even form 2 and odd-odd form 3. Then, form 0 always goes to 0, form 3 always goes to form 3 and forms 1

and 2 go to one another. The encipherment constraints and this labeling make it easier to examine the ciphertext

to see where the same pattern is visible as that in plaintext. This helps to determine the corresponding set of

ciphertext for the plaintext allowing a quicker recovery of the encryption matrix whose correctness can be verified

by application to the ciphertext.

Bauer and Millward expand upon the research done by Levine by proposing a new attack on the Hill Cipher

in which the inverse of the key matrix is recovered one row at a time. Their method includes making guesses

for the first row of the key matrix, which in the 2 × 2 case results in only the odd or only the even plaintext
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elements. While this does not tell them outright whether their guess is correct, they can statistically analyze their

results to see whether their guess is reasonable. This is done by comparing frequencies of the recovered putative

plaintext letters with the expected frequencies of the letters in the English language. The row that results in the

frequencies most similar to that of the English language generally provides the correct values for the first row.

The same procedure is completed for the second row to obtain those matrix values as well. Upon obtaining the

two combinations for the key matrix, it is necessary to make sure they are not multiples of one another, otherwise

the matrix determinant will not be relatively prime to the modulus of 26. Occasionally, they found that the top

combination for either trial was not the correct one and more than just the two top rows had to be considered to

obtain the correct matrix. The other problem that Bauer and Millward considered was how to score the putative

plaintext resulting from these rows to more efficiently obtain the true key matrix values. Their first attempt was

to give points equal to the sum of the frequencies of the putative plaintext characters as they corresponded to

English characters such that more frequently occurring letters in English that showed up in the putative plaintext

would receive more points. For example, a row that contained ‘x’ and ‘v’ would receive significantly fewer points

than one containing ‘e’ and ‘t’. This was not as successful as desired so they came up with an alternative scoring

method where points were awarded, or subtracted, depending on the letters present after the application of the

inverse key matrix to the ciphertext.

The first example considered was the 2 × 2 case in which all of the highest scoring rows were often deemed

impossible because they were not relatively prime to the modulus of 26. They found that for 64% of the trials,

the two highest scoring rows constructed the correct key matrix. In order to obtain the correct matrix 100% of

the time, it was necessary to consider the top seven rows in which there were 210 possible ordered pairings of the

seven rows. This is a significant reduction of necessary work by humans or computers in comparison to checking

all 157,248 invertible 2× 2 matrices.

When considering the 3× 3 case for the key matrix, it was found that the correct three rows of the key matrix

were obtained over 50% of the time if the top 17 were considered. To have all three rows 100% of the time, it was

necessary to consider the top 394 potential rows which results in 60,698,064 possible key matrices. This seemed

large to Bauer and Millward, but they point out that this is actually only .0037% of the total invertible 3 × 3

matrices. The same analysis was performed on the 4 × 4 key matrix and again yielded similar results of a large

reduction in necessary work to obtain the correct key matrix in comparison to the brute force method. Bauer and

Millward concluded that their new attack was successful, but still not optimal, believing that a stronger scoring

mechanism could yield better results. More reliable results could also be obtained, they thought, by using larger

samples of ciphertext. Finally, they believed that if the numeric equivalents of the letters of the text were not
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known, the attack would fail. [1]

1.3 Yum-Lee

Yum and Lee’s research [12] builds upon the ciphertext-only attack produced by Bauer and Millward. They

aim to present a more reliable scoring system for cryptanalysis of the cipher based upon goodness-of-fit statistics

while also showing how to apply attacks to the Hill cipher without knowledge of the numeric equivalents of the

pre-declared alphabet, a concern of Bauer and Millward.

The two researchers start out their paper by presenting background information similar to Bauer and Mill-

ward’s; first on the basics of the Hill Cipher in addition to touching upon research done by both Levine and Bauer

and Millward. For their use, Yum and Lee fix the encoding scheme with A=0 through Z=25 and the length of the

ciphertext to be 100. From there, they work with the goodness-of-fit statistic to see how well the model has been

described by each potential key matrix using the observed and expected values. This statistic is commonly used

in hypothesis testing where the null hypothesis generally assumes the two, observed and expected values, are the

same. Yum and Lee chose to use the χ2 statistic to analyze their null hypothesis that the character frequencies

of the putative plaintext are the same as the frequencies of letters in the English language. They then ranked

potential inverse key matrix rows based upon the resulting χ2 score for each row where the better rows had lower

χ2 scores implying smaller differences between observed and expected values.

The results of Yum and Lee’s research were not as ideal as they had hoped due to the new scoring failing

to significantly excel beyond the Bauer-Millward scoring system. This was attributed to the χ2 distribution

approximation failing to hold if the expected frequencies are too low which is the case with various less common

English letters such as ‘x’ and ‘q’. To attempt improvement, Yum and Lee found the exact probability of the

recovered plaintext equivalents. Using this, they constructed a new score by dividing the product of the expected

probabilities of the letters by the product of the observed probabilities of the letters. Larger values of this score

denoted better potential rows for the decryption matrix. Yum and Lee discovered this method, which they called

the simplified multinomial statistic method, to be much more effective than both the Bauer Millward and χ2

methods.

Yum and Lee’s other research examined the possibility of an unknown encoding scheme for assigning numbers

to the letters for the predetermined alphabet. For an alphabet of length 26, there are 26! possible encoding

schemes where with an unknown encoding scheme, it is not possible to count the observed frequencies of a specific

character. A solution would be to observe the shape of the distribution of tallied plaintext numerical equivalents.

Despite not knowing the numeric counterparts of the alphabet, the characters can still be sorted in descending

order by frequency and a new score can be computed. The new score is the product of the probabilities of the
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i-th most frequent English letters raised to the numerical equivalent of the i-th most frequent character in the

recovered plaintext and then divided by the product of the factorial of the numerical equivalent of the i-th most

frequent character in the recovered plaintext as seen below.

h(S; q,m) =

∏25
i=0 q

Si
i∏25

i=0 Si!

Here Si is the numerical equivalent of the i-th most frequently occurring character in the recovered plaintext, while

qi is the probability of the i-th most frequent English letter. A higher score denoted better rows for the decryption

matrix. Yum and Lee found this method to be very powerful for large messages.[12]

1.4 Leap-McDevitt-Novak-Siermine

The Elizabethtown College team begins their paper [7] in a similar fashion to other researchers with a brief

introduction and small recap on the research of prior cryptanalysts. This team modified the Bauer-Millward

attack to reduce computational complexity such that the scoring method they use decreases the complexity by

approximately φ(L) where φ is the Euler totient function and L is the length of their alphabet. Further scoring

is done using goodness-of-fit statistics to find the best rows for the inverse of the key and to discover the unique

inverse of the key matrix using potential plaintext digraphs. The team also worked to ultimately produce the

entire decryption matrix instead of simply the rows. In previous papers, it is not discussed how to construct the

inverse of the key matrix from the recovered rows, nor are matrices larger than 4 × 4 examined, most likely due

to computational restrictions. The Elizabethtown team presents a method to build the key’s inverse requiring b2

instead of b! ways to arrange the rows. This is accomplished through scoring English digraphs produced when

selected rows are paired.

The team presents the example of a 3× 3 key matrix inverse with only the first row of the matrix guessed and

then applied to the ciphertext. They then compute the index of coincidence of the resulting text, the likelihood of

picking two of the same characters in a set of text. This index of coincidence, they prove, is the index of coincidence

for 18 different vectors. This is because each vector is of the form m times the elements of a “base” vector modulo

the length of the alphabet where m is a number relatively prime to the length of the alphabet. Here, it is 18

different vectors because the alphabet length has been set to 27 and there are 18 numbers relatively prime to 27

mod 27. Elizabethtown also points out that despite having 273 potential vectors of length three, they can omit 93

of these vectors as there are nine different rows of which all are multiples of three and can each be arranged three

ways and therefore fail to yield invertible keys. This omission leaves 273 − 93 potential rows which can then be

divided by 18. In turn, this leaves only 1053 rows to consider compared to the original 19,683 rows. Each row is

given a χ2 score based upon its resulting text where low scores denote closer to English text. Finally, to recover
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the actual matrix, the team plugs in combinations of two of the best rows and recovers putative plaintext that

is missing every third letter. This putative plaintext is scored with a χ2 goodness-of-fit test to determine which

pairings are the best. When the best pair is recovered, it is easy to figure out the final row of the inverse key

matrix based upon the guessed plaintext and given ciphertext.

In the general case, Elizabethtown presents an analysis of various scoring methods. They find that the power,

the likelihood of rejecting a false null hypothesis, of the Bauer-Millward scoring method is practically the same as

the power of the multinomial method utilized by Yum and Lee. They determined that the index of coincidence is

most powerful for text greater than 50 characters in length and the χ2 statistic is most powerful for text over 65

characters in length. Many of the potential problems result from shorter texts due to lack of information or larger

block sizes for the key matrix because they are not easily computed with computers.

The Elizabethtown team also discusses scoring in a more general nature for when the length of the alphabet

is different that the length they set at the beginning of their paper. They consider the situation where the length

is simply prime, is a power of a prime or is a product of distinct primes. Regardless of length of the alphabet, the

Elizabethtown team found that they can reduce the work done by Bauer and Millward by a factor of φ.

1.5 Literature Review Thoughts

After examining prior cryptanalysis research for the Hill Cipher, there is still area for improvement as declared by

each researcher at the conclusion of their papers. Most need for improvement lies in developing ways to further

reduce complexity of the Bauer-Millward scoring method that Yum and Lee and the Elizabethtown team both

tackled, or in developing a new scoring method in order to recover the inverse of the key matrix to be used for

decryption. New methods to analyze the Hill Matrix aside from the row by row method proposed by Bauer and

Millward should also be investigated. Additionally, a method for large block sizes is necessary as they are typically

not conducive to most methods that have been suggested so far.

2 Cryptography

2.1 History

Cryptography is an ancient art dating back to before 1900 B.C. The word is derived from the Greek words

“kryptos” and “graphein” literally translating to hidden writing. In ancient times, the goal of cryptography was

to convert a message into unreadable text or figures in order to protect the contents as it was carried from one

city to another between two higher officials by a messenger [4].

The concept of cryptography is said to have originated with Egyptian scribes who used hieroglyphs to hide the

meanings of their messages. Not long after, the Greeks, wrapped their secret messages on tape that was wound
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around a stick with which the correct circumference stick was then necessary for decryption. This is often referred

to as the Spartan Scytale technique. Elsewhere in Europe, the Romans used the monoalphabetic Caesar Cipher

shift in which each letter was shifted the same number of characters within the cipher. For a three letter shift

Caesar cipher, an ‘a’ would become ‘d’, ‘b’ would become ‘e’ and so on [4]. The size of the shift is referred to as

the key or the information necessary to solve the cipher.

The Middle Ages presented the next set of advancements in evolving the monoalphabetic cipher into a polyal-

phabetic cipher. Polyalphabetic ciphers use multiple characters to generate one ciphertext character. The most

common 21st century polyalphabetic substitution cipher is the Vigenere cipher which utilizes the Vigenere Tableau

to complete character substitution [4]. The Vigenere tableau is unique because, depending on how the tableau is

set up, each row or column corresponds to a Caesar Cipher with shifts from zero to one less than length of the

alphabet. Using the tableau, the ciphertext character is given by the intersection of the row given by the keyword

letter and the column given by the plain text character [11].

2.2 Breaking Ancient Ciphers

Throughout history, ciphers have become increasingly more challenging to crack. The Ancient Greek Spartan

Scytale technique simply required obtaining a stick with the correct circumference. To crack this, one could

try varying sized sticks until they found a stick that produced intelligible text. The Caesar Cipher is similarly

uncomplicated to crack using either the brute force or the frequency analysis method. The brute force method

attempts every possible shift within the alphabet length. If the alphabet length is 26, like the English alphabet,

then there are 25 different shifts that can be attempted since the shift of zero or 26, which is zero modulo 26,

should not be attempted because that will result in the cipher text. For frequency analysis, it is necessary to know

what language the plaintext will be in. From there, the cryptanalyst can analyze the frequency of each character

in the cipher and attempt to match the more frequently occurring characters with the high frequency characters in

the language of the text. For instance, ‘e’ is the most frequent letter in English and therefore could be substituted

for the highest frequency cipher text character [4].

Cracking the Vigenere cipher is more challenging than cracking prior ciphers due to each plaintext character

being encrypted as multiple different ciphertext characters. One of the major benefits of a polyalphabetic cipher is

the plaintext to ciphertext relation depends upon which character from the keyword the plaintext was paired with.

This thwarts the use of frequency analysis to crack the cipher and therefore increases the difficulty of obtaining

the original message.

All of the ciphers discussed so far have been stream ciphers where plaintext is encrypted and ciphertext is

decrypted one character at a time. These forms of ciphers are much less complicated to cryptanalyze than their
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counterparts, block ciphers. Block ciphers work on encryption and decryption over multiple characters at a time.

This added complexity of characters being dependent upon more than one other character increases the security

of the cipher and also increases the difficulty of cryptanalysis.

3 The Hill Cipher

3.1 Introduction

The Hill Cipher, a modular arithmetic, matrix based block cipher, is a final classical cipher and the main focus

of this paper. This cipher “[made] polygraphic cryptography practical for the first time” according to the author

of The Codebreakers, David Kahn. Lester Hill, creator of the Hill cipher, was a late 19th - early 20th century

mathematician. Hill spent the majority of his working life as a college professor at four different universities during

which time he also earned his PhD in mathematics, only taking a short break to fight in World War I. Throughout

his scholastic career, Hill authored numerous papers and directed abundant research in areas of error detection

and cryptography [3]

Hill’s first paper on the Hill Cipher appeared in the June-July 1929 issue of The American Mathematical

Monthly under the title of “Cryptography in an Algebraic Alphabet”. Here, the Hill cipher was described as

matrix encryption in which a series of plaintext n characters long was converted into n characters of ciphertext.

To change the plaintext to ciphertext, the plaintext must be converted into its numerical equivalent. Prior to

converting to numerical equivalents, it is necessary to ‘clean’ the text such that it only consists of characters

within the given, predetermined alphabet. If the alphabet consists only of lowercase letters, than all letters within

the text are converted to lowercase and all other characters are omitted. In the most common situation, the

letter to number substitutions are such that ‘a’ is zero, ‘b’ is one, through ‘z’ is 25. Hill’s original encoding

scheme for the Hill cipher is not the most common situation. Here, his letter to number conversion was not linear

meaning that ‘b’ was not necessarily mapped to the number that immediately follows the number to which ‘a’

was mapped. Numerous cryptanalysts praised this encryption method for the added security that resulted from

the nonlinear substitution [6]. Occasionally, more characters such as space, punctuation or special characters from

other languages are appended to the end of the alphabet causing the length of the “alphabet” to be longer than the

traditional 26. For the remainder of this paper, we will assume an alphabet of length 29 consisting of all lowercase

characters ‘a’ through ‘z’, space, period and comma. The length of the alphabet is a crucial piece of information

to anyone trying to encrypt or decrypt the series of text. The modular arithmetic of the Hill matrix is dependent

upon the length as it is the modulus used to reduce the numbers obtained from matrix multiplication so that

text can be retrieved from their numerical counterparts. Example 3.1 shows the basic process for generating the
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numerical representation of a set of plaintext.

Example 3.1.

Alphabet = abcdefghijklmnopqrstuvwxyz .,

Plaintext: OnCe UPON a time, in a far off land, THERE liveD a mathematician!

Cleaned Text: once upon a time, in a far off land, there lived a mathematician

Numerical Representation: 14 13 2 4 26 20 15 14 13 26 0 26 19 8 12 4 28 26 8 13 26 0 26 5 0 17 . . .

3.2 How it Works

Upon obtaining the numerical representation of cleaned text, the next step is to arrange it properly for encoding.

To determine the proper array for the characters, it is necessary to decide upon a ‘key size’. The key, the matrix

used for encryption via matrix multiplication, is an n × n matrix. The numerical plaintext then needs to be

arranged into an n × m matrix since the key premultiplies the plaintext matrix. The plaintext characters are

arranged in their matrix in a vertical manner where the first n characters are arranged in the first column and

then the text is continued at the top of the second column [12]. In the situation that there is not enough plaintext

to fill the entire n×m matrix such that the last column is only partially filled, one may pad the text with artificial

letters, commonly ‘x’, ‘q’ or ‘z’ as they are easily distinguished as padding upon decoding due to being less frequent

occurring letters in English.

The key itself has many special rules. Most importantly, the key is required to be invertible otherwise decryption

is not possible. To be invertible, the determinant of the matrix must be nonzero and relatively prime to the length

of the alphabet or modulus. If the alphabet is 26 characters long, including only lowercase letters ‘a’ through

‘z’, then the determinant of the key matrix can not be divisible by 2 or 13 as they are both multiples of 26 and

therefore are not relatively prime to the modulus. We chose an alphabet of length 29 since it is prime and therefore

we do not encounter this issue. The determinant of the key matrix must follow these rules otherwise the key used

for decryption would be unobtainable as it is the inverse of the original key matrix [12].

For actual encryption to occur, the n × n key matrix pre-multiplies the n × m matrix of plaintext. This

matrix multiplication returns a n×m matrix of ciphertext. The ciphertext matrix must then be reduced modulo

the length of the alphabet to easily convert the numerical representation of the letters back into their alphabetic

counterpart. If n is two, the key is constructed as an invertible 2×2 matrix. Multiplication of the first column (two

characters) of plaintext by the key returns the first two characters of ciphertext. In generating these ciphertext

characters, they are both dependent on both of the first two plaintext characters. To obtain the first ciphertext

character, the first row of the key is multiplied by the first column of plaintext, or the first two characters of
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plaintext. To obtain the second ciphertext character, the second row of the key is multiplied by the first column

of plaintext. The following gives the steps for a full 2× 2 key matrix encryption example from start to finish. The

plaintext I LOVE MATH. is converted into the numerical sequence (8 26 11 14 21 4 26 12 0 19 7 27)

The key used for this 2× 2 matrix encryption is given by

Key =

(
4 3
3 2

)
.

To complete encryption, the numerical plaintext is arranged into a 6 × 2 matrix in order to be compatible with

the 2×2 key and then matrix multiplication occurs to result in the ciphertext. The resulting numerical ciphertext

is then reduced modulo 29, the length of the alphabet.

Ciphertext =

(
4 3
3 2

)(
8 11 21 26 0 7
26 14 4 12 19 27

)
=

(
110 86 96 140 57 109
76 61 71 102 38 75

)
≡
(

23 28 9 24 28 22
18 3 13 15 9 17

)
mod 29,

resulting in the numerical ciphertext Sequence: (23 18 28 3 9 13 24 15 28 9 18 24), which corresponds to

XS.DJNYPXJSY as the resulting ciphertext.

Note, each character of ciphertext is dependent on numerous factors including multiple key and plaintext

characters. This causes the difficulty of cryptanalysis of the Hill cipher. The Hill Cipher enables varying encryption

of the same plaintext character due to different pairings of plaintext characters and key matrix characters. The

original plaintext has two spaces, denoted as 26 in the numerical plaintext, but when examining the resulting

ciphertext, you can see that the first space was encoded as an ‘S’ while the second space was encoded as a ‘Y’.

This displays how the Hill Cipher masks letter frequencies which is information commonly used for decryption.

3.3 Basic Idea of Decryption

Decrypting the Hill matrix is not complex if one has access to the original key matrix and the set of ciphertext.

First, the decrypter must compute the inverse of the key matrix. Using the previous example, the inverse of the

key matrix is

Inverse Key =

(
4 3
3 2

)−1

=

(
−2 3
3 −4

)
Upon obtaining the inverse of the key matrix, the decrypter pre-multiplies the n × m matrix of ciphertext by

the inverted key matrix. The resulting n × m matrix of plaintext must then be reduced modulo the length of
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Cipher Keyspace

Caesar 25

2× 2 Hill 682, 080 ≈ 219.4

3× 3 Hill 13, 989, 670, 880, 640 ≈ 243.7

4× 4 Hill 241, 319, 751, 100, 575, 994, 828, 800 ≈ 277.7

5× 5 Hill 3, 500, 860, 685, 395, 554, 849, 102, 157, 075, 077, 734, 400 ≈ 2121.4

6× 6 Hill 42, 712, 284, 908, 737, 393, 674, 385, 678, 513, 029, 803, 119, 097, 861, 332, 992, 000 ≈ 2174.8

Table 1: Table indicating the size of the keyspace for different ciphers.

the alphabet to obtain the characters’ numerical representation which can easily be converted back into their

alphabetic counterparts.

Plaintext =

(
−2 3
3 −4

)(
23 28 9 24 28 18
18 3 13 15 9 24

)
=

(
8 −47 21 −3 −29 7
−3 72 −25 12 48 −2

)
≡
(

8 11 21 26 0 7
26 14 4 12 19 27

)
mod 29,

which results in our original plaintext from before, “I LOVE MATH.”.

The difficulty in Hill Cipher decryption arises when knowledge of the original key matrix is unavailable. Then,

decryption is dependent only upon knowledge of the ciphertext and, typically, the language of the original plaintext.

Much of the complexity of cracking the Hill Cipher lies in the number of possible keys compared to previous ciphers.

In the Caesar cipher there were only 25 different keys to try before the brute force method was exhausted. In the

situation of the Hill cipher, the simplest enciphering occurs with a 2× 2 key matrix. For this 2× 2 matrix, there

are 682,080 possible invertible matrices meaning that to exhaust the brute force method meaning 682, 080 ≈ 219.4

possible matrices would have to be tried compared to the 25 previously. These numbers grow exponentially as

the key size increases. For example, a 3 × 3 matrix encryption keyspace is 13, 989, 670, 880, 640 ≈ 243.7 and a

4 × 4 keyspace is 241, 319, 751, 100, 575, 994, 828, 800 ≈ 277.7 [1]. Table 1 shows a comparison of various ciphers

and their corresponding keyspaces. It is important to note that Table 1 simply displays the number of invertible

matrices, not the total number of n × n matrices. The process of recovering only the invertible matrices is yet

another challenge to which there also is not a simple and efficient method. To solve a general case of the Hill

cipher with key size n × n, a method more efficient than brute force is necessary. The remainder of this paper

analyzes possible methods of cracking the Hill Cipher having strictly knowledge of the ciphertext.
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4 Hill Cipher Decryption

4.1 Bauer-Millward

Progress towards complete cryptanalysis of the Hill Cipher in the twenty-first century has stemmed from the

2007 efforts made by Craig Bauer and Katherine Millward of York College, who recovered individual rows of the

encryption matrix, in contrast to previous attempts to recover the entire encryption matrix at one time. Bauer

and Millward worked on a ciphertext-only attack in which the plaintext is unknown, but they assumed they had

knowledge of the size of the key matrix. In the 2× 2 case, having knowledge of one row of the decryption matrix

supplies them with the plaintext equivalents for all of the odd or even positioned characters. While these characters

can not be visually examined to see if they are correct, they can be statistically compared to the typical occurrence

of characters in English via frequency comparison. The same procedure is done for the second row, but the highest

scoring row will appear as the top choice for the second row as well. Bauer and Millward consider the top choices

for the rows such that the two rows are distinct in order for the key matrix to be invertible. Various combinations

of the top choices are tried in different orders until when the key matrix is applied to the ciphertext, readable

plaintext is obtained. The main issue that Bauer and Millward examined was how to score and rank these rows

such that every possible row did not have to be considered.[1]

Bauer and Millward originally considered the 2× 2 case in which there are various rows that are impossible to

be used within the key matrix due to rendering it not invertible. These rows for an alphabet of length 26 include

(0,13), (13,0), (13,13) and anything of the form (even,even) because then the determinant of the matrix would

not be relatively prime to the modulus of the alphabet length. Each row was given a score based upon how the

resulting frequencies of its putative plaintext compared to English character frequencies and then the rows were

ranked based upon this score. Commonly, only a small percentage of rows, relatively speaking to the entire key

space, had to be considered to obtain the correct rows for decryption. While Bauer and Millward were successful

with their approach, they recognized that their scoring method was most likely not the optimal method.

4.1.1 2× 2 Bauer Millward Case using Gettysburg Address

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ .,

Ciphertext: “EOPHUAUSHGK DD... A,WFKNMR.”

Numerical Ciphertext: 4 14 15 7... 12 17

Matrix form: (
4 15 ... 12
14 7 ... 17

)
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Figure 1: Bauer-Millward scores for the 292 = 841 possible encryption matrix rows for the ciphertext “EO-
PHUAUSHGK DD... A,WFKNMR.” The two highest scores are 1159.0 and 1118.5, which correspond to (27, 3)
and (3, 25) respectively.

Potential Rows: (
0 0

)
,
(
0 1

)
, ...,

(
28 28

)

Putative Plaintext:(
28 28

)( 4 15 ... 12
14 7 ... 17

)
≡
(
504 616 ... 812

)
≡
(
11 7 ... 0

)
mod 29

Scored Using Point system:

(Space): 3 Points

AETNO: 2 Points

HILRS.: 1 Point

FGP,: 1/2 Point

MBCDUVWY: 0 Points

QJKXZ: -1 Points

The highest scoring rows are
(
27 3

)
with a score of 1159.0,

(
3 25

)
with a score of 1118.5, and

(
15 9

)
with a

score of 693.5. Note the significant drop off in point values for pairs
(
27 3

)
and

(
3 25

)
versus

(
15 9

)
, which

is more clearly evident in Figure 1. Note in Figure 1 that there are two high scoring pairs on the vertical axis by

1200 that distinguish themselves from the rest corresponding to rows
(
27 3

)
and

(
3 25

)
.

Now that we are confident that the rows of the decryption matrix are
(
27 3

)
and

(
3 25

)
, there are two ways

to order them: (
27 3
3 25

)
or

(
3 25
27 3

)
.

The first results in the putative plaintext(
27 3
3 25

)(
4 15 ... 12
14 7 ... 17

)
≡
(

5 20 ... 27
14 17 ... 26

)
mod 29
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that corresponds to FOURSCORE AND SEVEN YEARS AGO... The second gives(
3 25
27 3

)(
4 15 ... 12
14 7 ... 17

)
≡
(

14 17 ... 26
5 20 ... 27

)
mod 29,

which corresponds to OFRUCSRO ENA DESEV.... The first choice for the decryption key matrix of(
27 3
3 25

)
is clearly the correct choice.

It was easy to determine the correct ordering of the rows in this example because there are only two of them.

However, in the general case for an n × n matrix, there are n! ways to arrange the rows making it much more

complex to correctly order the potential rows of the decryption matrix.

4.2 Elizabethtown Team

The Elizabethtown College team consisting of professors Dr. Tom Leap and Dr. Tim McDevitt along with students

Kayla Novak and Nicolette Siermine modified the attack made by Bauer and Millward to reduce computational

complexity and also to produce the entire decryption matrix instead of just the rows. The alternative scoring

method of use of the Index of Coincidence proposed by the Elizabethtown team reduced overall complexity by a

factor of φ(L) where L is the length of the alphabet and φ is the Euler totient function. This reduction occurs

because when testing a row of (1 2 3) for example, one is actually checking all possibilities of the form m(1

2 3) modulo L where m is relatively prime to L. In the case of the alphabet of length 27 considered by the

Elizabethtown team, computational complexity is reduced by a factor of φ(27) = 18. This is because there are

18 rows with the same index of coincidence making it possible to test only one of those, the base row, since we

only need to check each index of coincidence (IoC) once. The index of coincidence measures the likelihood of two

randomly selected characters in a set of text being the same and is given by

IoC =
1

N(N − 1))

n∑
i=1

(Fi(Fi − 1))

where N is the length of the text, n is the length of the alphabet, and Fi is the number of times the ith character

appears in the text. The IoC of English text is typically around 0.072 for our 29-character alphabet, whereas

the IoC of Hill ciphertext is typically close to 0.035, which is close to completely flat text where the IoC is

1/29 ≈ 0.0344.

The IoC is invariant with respect to multiples of the same text. For example, the character frequencies in
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(a) (b)

Figure 2: Character frequencies in the text (a) “ELIZABETHTOWN COLLEGE” and in (b) two times that text.

“ELIZABETHTOWN COLLEGE” are shown in Figure 2(a) and

IoC = P (Two randomly selected characters are identical)

= P (E and E) + P (L and L) + P (O and O) + P (T and T)

=
4(3) + 3(2) + 2(1) + 2(1)

21(20)

≈ 0.0524.

Multiplying the text by any integer relatively prime to 29 simply permutes the frequencies while leaving the IoC

unchanged. For example, Figure 2(b) shows “ELIZABETHTOWN COLLEGE” multiplied by 2 and

IoC = P (I and I) + P (J and J) + P (W and W) + P (, and ,)

=
4(3) + 2(1) + 3(2) + 2(1)

21(20)

≈ 0.0524.

This invariance allows us to use the IoC to examine a partial string of putative plaintext resulting from a base

class where the characters are not necessarily the ones present in the plaintext, but rather a multiple of them, in

order to see if it is English. This differs from using something such as the χ2 score to analyze the text because

in that situation, each character is compared to itself such that the frequency of ‘A’ in the putative plaintext is

compared to the frequency of ‘A’ in English text.

Once the highest IoC scoring base rows are obtained, multiples of the form m× baserow are checked to obtain

the best multiples of each base row. The top IoC row multiples are ranked using goodness-of-fit scoring, typically

χ2. The χ2 score compares observed data, character frequencies from the putative plaintext, with expected

frequencies of characters taken from the Brown Corpus and is calculated for an alphabet of length 29 using

χ2 =

29∑
i=0

(observed− expected)2

expected
.

Once the best n rows are identified, to correctly order the prospective rows, digraph combinations are consid-

ered. A digraph is a pair of sequential characters in a body of text. The putative plaintext digraphs are assembled
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by trying pairs of two sequential decryption matrix rows at one time resulting in text that has pairs of putative

plaintext characters surrounded by ciphertext. χ2 scores are then computed for these digraph combinations by

comparing to English digraph frequencies taken from the Brown Corpus. The lowest χ2 scoring pairs denote most

likely English combinations and tell us how to order the rows of the decryption matrix. It is also possible to

deduce a missing row from the decryption matrix in the situation that all but one are recovered from the index of

coincidence and goodness-of-fit scorings. The putative plaintext is assembled using the decryption matrix formed

from the ordering found in the digraph putative plaintext scoring. In the correct ordering, it will be visible where

missing characters are located and will tell us where the other row should be placed. Then the putative plaintext

will allow the cryptanalyst to discern the necessary letters to complete the text which will in turn allow them to

figure out the solution of the missing row using the characters and the ciphertext.[7]

4.2.1 2× 2 Case using Gettysburg Address

Let’s examine an example.

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ .,

Ciphertext: EOPHUAUSHGK DD . . . AA ,WFKNMR

Numerical Ciphertext: 4 14 15 7 . . . 10 13 12 17

Applying each base row of the form
(
0 26

)
and

(
26 p

)
, p = 0, 1, . . . , 28, to the ciphertext and scoring the

resulting putative plaintext yields the scores displayed in Figure 3. Recall that we don’t need to calculate the IoC

of every possible row because, as stated above, each base row has the same IoC as φ(L) = 28 other rows.

The two best IoCs in this example correspond to
(
26 19

)
and

(
26 4

)
, so we next calculate putative plaintext

subsequences using m
(
26 19

)
and m

(
26 4

)
, m = 1, 2, . . . , 28, and score them using the χ2 statistic. See Figure

4. The multiple 20
(
26 19

)
=
(
27 3

)
clearly has a significantly lower lnχ2 score than the others making it a

likely candidate row of the decryption matrix. The natural log was taken of each score in order to make the graph

of all scores easier to examine. Similarly, the multiple 28
(
26 4

)
=
(
3 25

)
clearly has a significantly lower lnχ2

score than its competitors, making it a the probable other row of the decryption matrix. This suggests two likely

decryption matrices,

(
27 3
3 25

)
or

(
3 25
27 3

)
. The first matrix gives the putative plaintext “OFRUCSRO ENA...”

and the second gives “FOURSCORE AND SEVEN...”, so

(
3 25
27 3

)
is the correct decryption matrix.

For the n× n case, we would have n candidate rows to order to construct the decryption matrix, where each

candidate row is the highest scoring χ2 multiple of the n highest IoC base rows. Normally, there would be n! ways

to arrange these n possible rows unless a more insightful method is utilized, which is what the Elizabethtown team

did. They plug two potential decryption rows into the key inverse sequentially at a time, and use this to develop
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Figure 3: Index of Coincidence scores for the putative plaintext subsequences generated by the base rows for
the ciphertext “EOPHUAUSHGK DD . . . AA ,WFKNMR.” The best scores correspond to (26, 19) and (26, 4),
respectively.

(a) (b)

Figure 4: Goodness of fit scores for the putative plaintext subsequences corresponding to (a) m(26, 19) and (b)
m(26, 4), m = 1, 2, . . . , 28. The best (lowest) scores correspond to 20(26, 19) ≡ (27, 3) and 28(26, 4) ≡ (3, 25)
mod 29, respectively.
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putative plaintext in digraph segments. The digraph distribution of the putative plaintext is compared to that

of English using a χ2 score. The row pairs forming digraphs that resulted in the lowest χ2 scores would display

the appropriate ordering for the decryption matrix. For example, if the lowest scoring digraph combinations for a

4× 4 key matrix were

(
B
A

)(
A
C

)(
D
B

)
, then the correct ordering of the decryption rows is


D
B
A
C

.

4.3 Present Progress

This thesis presents further improvements upon the work done by the Elizabethtown team by dramatically de-

creasing the amount of time to complete a ciphertext-only attack. Our first improvement involves a change to

working with plaintext instead of the entries in the decryption matrix. Working directly with the plaintext allows

us to do random searches that are guided by expected character frequencies in a given language. For instance, in

English, it makes much more sense to choose space as a character in a sequence than an ‘X’ because space is the

most frequently occurring character in English whereas ‘X’ occurs only rarely. The second significant outcome of

this thesis is that the resulting attack can easily be parallelized to run on multiple processors.

Consider the ciphertext from the last example shown in (1). Before cryptanalysis, the hij and pi are all

unknown and the goal is to recover them. The attacks explained above strive to determine the hij first, but now

we strive to find the pi first.(
h11 h12
h21 h22

)(
4 15 ... 12
14 7 ... 17

)
≡
(
p1 p3 . . . p1433
p2 p4 . . . p1434

)
mod 29 (1)

Consistency conditions for (1) lead to a plaintext sequence of the form

{p1, p2, p3, p4, 26p1 + 6p3, 26p2 + 6p4, 9p1 + 26p3, 9p2 + 26p4, . . .} .

In general, the sequence looks like

{p1, p2, p3, p4, Ap1 +Bp3, Ap2 +Bp4, Cp1 +Dp3, Cp2 +Dp4, . . .}

where A, B, C, D, . . . are integers from 0 to 28. Note that odd-even pairs have the same coefficients. This

similarity in coefficients allows us to break this larger sequence into smaller subsequences or either the odd pi or

the even pi. For example, the odd subsequence has the form

{p1, p3, Ap1 +Bp3, Cp1 +Dp3, Ep1 + Fp3, Gp1 +Hp3, . . .} .

Once we have this smaller subsequence we can generalize the possibilities for p1 and p3 via formation of base rows.

The idea of forming base rows results from the φ(L) reduction that the Elizabethtown team discovered. Our base
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rows take the form of
(
26 c1 c2 . . .

)
,
(
0 26 c1 . . .

)
,
(
0 0 26 . . .

)
where for an n × n matrix, the base

rows would have n elements. These base rows start with 26 because that corresponds to the space character in

our alphabet and space is the most frequently occurring character in the English language. The ci may be any

integer from 0 to 28, but are strategically chosen in an order based upon letter frequency in English given as such

where higher frequency characters are chosen first:

26 4 19 0 14 8 13 18 17 7 11 3 2 20 12 5 15 6 22 24 1 28 27 21 10 23 9 16 25
space E T A O I N S R H L D C U M F P G W Y B , . V K X J Q Z

Each of these base rows are then substituted for the original odd (or even) plaintext characters and expanded

to complete the odd (or even) subsequence of the larger text. For example, substituting 0 for p1 and 26 for p3

gives

{p1, p3, Ap1 +Bp3, Cp1 +Dp3, Ep1 + Fp3, Gp1 +Hp3, . . .} = {0, 26, 26B, 26D, 26F, 26H, . . .} .

The even/odd partition is only relevant for the 2 × 2 case. For the 3 × 3 case, the sequences would be in steps

of three starting at p1, p2 and p3 where the first would be in terms of p1, p4 and p7, the second in terms of p2,

p5, and p8 and the third in terms of p3, p6 and p9. Each putative plaintext subsequence formed from a base row

is then analyzed using the IoC score and the IoC scores are ordered from highest to lowest. The n highest IoC

scores should be significantly higher than the rest, but it is acceptable to use only the top (n − 1) IoC scores

as explained in [7]. The top n IoC scores represent the base element combinations that will build the actual

decryption elements.

Once these base elements are obtained, all 28 multiples of each base element are calculated and scored with

the χ2 score. With our alphabet length of 29, all numbers less than 29 with the exception of zero are relatively

prime to 29, so there are 28 multiples to check for each base element combination. The smallest χ2 scores most

correspond to elements that can be used to recover the entire plaintext. Once all of the proper subsequences have

been obtained, it is necessary to arrange them to form the entire plaintext sequence. In a simple 2× 2 case that

means simply deciding which multiple should be assigned to the even subsequence and which should be assigned

to the odd subsequence, and a visual examination of the putative plaintext will display the correct selection.

In a larger n × n case, there are n! ways to select the elements for the base p’s which leads us back to

Elizabethtown’s method of scoring digraphs. In a 4× 4 case, we would try different combinations of the suggested

decryption elements for p1 and it’s group and p2 and it’s group until we have found the putative plaintext digraphs

for each set of combinations. The χ2 score of these digraphs compared to English digraphs resulting from the

Brown Corpus in which a lower score corresponds to English will ultimately show which order to place the base
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Figure 5: As b, the block size, increases, the average relative number of iterations attempted decreases linearly
independent of text length shown by the varying colors of points

pi in. This decreases the amount of work necessary from n! attempted orderings to

(
n

2

)
=

n!

2(n− 2)!
possibilities.

The Elizabethtown method is difficult to parallelize, but our approach can easily be modified to run efficiently

on multiple processors. For example, consider the n = 2 case in which each term in the odd subsequence is written

as a linear combination of p1 and p3. The choices of p1 and p3 are largely arbitrary, so we could express the terms

in the subsequence as a linear combination of p3 and p5, or p5 and p7, and so on.The maximum number of different

subsequences possible is ⌊
Text Length

n

⌋
− n+ 1

where bxc is the greatest integer less than or equal to x.

If we rename the base elements in each subsequence p1 and p3 then we can test a great number of subsequences

simulataneously, and if each subsequence is tested on a separate processor, then the speedup can be dramatic,

especially if processing is stopped once n quality base elements are discovered.

We tested this approach for n = 3, 4, and 5 and, on average, less than 0.5% of all base classes needed to be

considered to recover the plaintext. For a text of length 500, it was found that for the 3× 3 case only 0.23% of all

possible base classes had to be considered, for the 4 × 4 case only 0.28% were considered and for the 5 × 5 case

only 0.017% of all possible base classes were considered as shown in Figure 5 .

Furthermore, we found that for a text length of 1000, in the 3× 3 case, 4× 4 case, and 5× 5 case, we were able

to recover all of the correct scoring p combinations 99.7%, 98.9% and 96.0% of the time, respectively. In all cases,

when we didn’t recover all of the combinations, we did recover all but one. This shows that as long as the text
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is sufficiently long, the method works efficiently. Not recovering all n subsequences is acceptable because having

(n− 1) out of n subsequences still usually produces intelligible plaintext as outlined in [7].

Ultimately, by trying plaintext subsequences based on character frequencies and the use of parallelization across

all possible plaintext subsequences, we are able to cut the necessary work by a factor of approximately 400-500,

obtained by considering the fact that we only need to consider approximately 0.002 to 0.0025 of all possible base

class multiples. We implemented our method in Mathematica, so further advancements can be achieved by re-

programming our method in C or Java and by using multiple processors as outlined above, but that work is left

for future research.

4.3.1 2× 2 Example using Gettysburg Address

For completeness, let’s resume the example begun in (1). If we regard the pi as known (which they’re not) and

the hij as unknown, then (1) gives us 1434 congruences for 4 unknowns, h11, h12, h21, and h22. Solving for those

unknowns generates consistency constraints on the pi and tell us that the plaintext has the following form

{p1, p2, p3, p4, 26p1 + 6p3, 26p2 + 6p4, 9p1 + 26p3, 9p2 + 26p4,

16p1 + 2p3, 16p2 + 2p4, 11p1 + 19p3, 11p2 + 19p4, . . . ,

12p1 + 11p3, 12p2 + 11p4, 25p1 + 27p3, 25p2 + 27p4}

for some p1, p2, p3, and p4. Highlighting the even and odd terms,

{p1, p2, p3, p4, 26p1 + 6p3, 26p2 + 6p4, 9p1 + 26p3, 9p2 + 26p4,

16p1 + 2p3, 16p2 + 2p4, 11p1 + 19p3, 11p2 + 19p4, . . . ,

12p1 + 11p3, 12p2 + 11p4, 25p1 + 27p3, 25p2 + 27p4}

allows us to extract a representative subsequence

{p1, p3, 26p1 + 6p3, 9p1 + 26p3, 16p1 + 2p3, 11p1 + 19p3, . . . , 12p1 + 11p3, 25p1 + 27p3}

that contains only two unknowns.

Suppose that we intend to implement this method on a machine with four CPUs. Then we can re-write the

representative subsequence relative to 3 other base pairs as follows.

{p1, p3, 26p1 + 6p3, 9p1 + 26p3, 16p1 + 2p3, 11p1 + 19p3, . . . , 12p1 + 11p3, 25p1 + 27p3}

{2p3 + 19p5, p3, p5, 15p3 + 26p5, 5p3 + 14p5, 12p3 + 6p5, . . . , 6p3 + 25p5, 19p3 + 11p5}
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Figure 6: Index of coincidence scores for the illustration of our cryptanalysis method. The two base elements with
the highest IoCs are (26, 17) and (26, 15).

{2p5 + 4p7, 6p5 + 2p7, p5, p7, 15p5 + 10p7, 20p5 + 24p7, . . . , 3p5 + 12p7, 9p5 + 9p7}

{22p7 + 4p9, 27p7 + 12p9, 9p7 + 2p9, p7, p9, p7 + 11p9, . . . , 10p7 + 6p9, 3p7 + 18p9}

Then we rename all of these base pair entries p1 and p3 as follows.

{p1, p3, 26p1 + 6p3, 9p1 + 26p3, 16p1 + 2p3, 11p1 + 19p3, . . . , 12p1 + 11p3, 25p1 + 27p3}

{2p1 + 19p3, p1, p3, 15p1 + 26p3, 5p1 + 14p3, 12p1 + 6p3, . . . , 6p1 + 25p3, 19p1 + 11p3}

{2p1 + 4p3, 6p1 + 2p3, p1, p3, 15p1 + 10p3, 20p1 + 24p3, . . . , 3p1 + 12p3, 9p1 + 9p3}

{22p1 + 4p3, 27p1 + 12p3, 9p1 + 2p3, p1, p3, p1 + 11p3, . . . , 10p1 + 6p3, 3p1 + 18p3}

These final four subsequences are then assigned to different processors to speed up the run-time by a factor of

close to 4.

We loop over all base class elements of the form (p1, p3) ≡ (0, 26) or (26, p), p = 0, 1, . . . , 28, stopping when

we have found two high-scoring elements. We also order the choices of p to correspond to the likelihoods of their

appearing in English plaintext. Figure 6 shows the indices of coincidence for all of the base pairs, but in practice

computation stops once the two scores near 0.08 are discovered.

Once the promising base elements are discovered, we test the multiplesm(26, 17) andm(26, 15), m = 1, 2, . . . , 28

using the χ2 score. The multiples with the best fit are (5, 20) and (14, 17), respectively. This gives two possibilities

for (p1, p2, p3, p4), namely (5, 14, 20, 17) and (14, 5, 17, 20). The first gives the plaintext sequence

(5, 14, 20, 17, 28, 2, 14, 17, . . .)

that corresponds to “FOURSCORE AND SEVEN...,” and the second gives

(14, 5, 17, 20, 2, 18, 17, 14, . . .),

which corresponds to “OFRUCSRO ENA...” Clearly, the first choice is correct and we have recovered the original

plaintext.
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(a)

(b)

Figure 7: ln(χ2) scores for all multiples of (a) (26, 17) and (b) (26, 15) illustrating our cryptanalysis method. The
lowest scores correspond to (5, 20) and (14, 17) respectively.

5 Conclusion

5.1 Other Research Efforts

Although we have made some significant advancements, there are many more areas to be pursued in future research

of cryptanalysis of the Hill Cipher. As all previous cryptanalysts have stated, there is still a need for a better

scoring algorithm if a row-by-row decryption of the inverse key matrix is utilized. Progress has been made in

this area by moving from the Bauer-Millward ad hoc approach to the Elizabethtown team’s Index of Coincidence

method.

We have tried a variety of other approaches that are not described in this thesis because they were ultimately

unsuccessful. Some attempted methods included using different goodness-of-fit tests including the Kolmogorov-

Smirnov test and making various changes to the χ2 test including working with an ordered χ2 test. This version

compared the frequencies of the characters in ranked order, highest to lowest between the plaintext and English,

with no regard to which character they were representing. Alterations were also made to the χ2 formula in which

the denominator was transformed into it’s inverse, but no significant improvements resulted from any of these

methods. Other attempted scoring methods included the creation of a dictionary score where the plaintext was

given a score based upon how closely it matched an English word from the Mathematica dictionary and we also

tried to work with our putative plaintext subsequence to use this dictionary score to more accurately choose

characters so that they would be creating words. Two important aspects that we considered with the dictionary
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score was the frequency of spaces and average word length. Space is the most frequently occurring character in

the English language, so an abnormally low number should be a warning. Average word length was considered

because if we were to receive a string of putative plaintext that consisted of multiple words over 20 characters long,

it was obvious that it was not the correct sequence and it could be discarded early on in the testing sequence.

One technique that frequently reappeared in what we were trying was the Markov matrix. Due to the nature

of the English language, there are various relationships between characters and distance between characters. If

they are sequential characters, there are very strong relationships between the characters and which follows which.

For example, it is highly likely that ‘q’ would be followed by ‘u’, but highly unlikely that it would be followed

by ‘x’. There are also relationships between characters that have one or more characters between them. These

relationships are easily modeled using a Markov matrix which can be assembled using a large set of text like the

Brown Corpus. The benefit of using a Markov Matrix is that it only needs to be constructed once for each distance

between characters, whether they be next to one another, one character apart, etc and then it may be continuously

referenced. The difficulty with the Markov matrix arose when we were considering large key sizes because of the

very poor relationships between characters that are significantly far apart, such as ten characters apart, which led

to us abandoning this technique for large cases.

At various points in our research, we also considered working with digraphs or triples of letters. In English, as

stated above, there are clear relationships between characters and which are more likely to be followed by others.

We tried to use this technique when working with our putative plaintext string to intelligently choose characters

using something similar to our dictionary scoring mechanism due to these relationships. This method collapsed

when we considered the magnitude of how many possible triples, quadruples, and so forth exist. The chance of

starting a triple or quadruple and having the first character wrong from the start, but proceeding with testing that

first character through every possible second and third character before proceeding to a different first character of

the sequence also generated concern. This would ultimately be very time consuming and therefore would not be

very efficient.

5.2 Closing Thoughts

Two major advancements were made through our efforts in writing this thesis. Looping over putative plaintext

instead of random matrix enties enables us to use a much more efficient method to choose characters. Through

the use of putative plaintext, we were able to use the common knowledge of English character frequencies and the

relationships between characters. When we are working with plaintext, we have a reason to start a series of text

with a space or an ‘e’ than with a ‘q’ or an ‘x’. This is an improvement over working with matrix entries for the

decryption key because there all of the entries were randomly selected.
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The second advancement came in the form of easier parallelization of the search process. In our putative

plaintext case, it was simple to parallelize by considering every possible subsequence in the text length and trying

base classes that were strategically constructed based upon a frequency sorted alphabet. If a base class attained

a high IoC score, then all of the multiples of the base class were calculated and then applied to the plaintext

subsequence to calculate regular χ2 scores. If the χ2 score was sufficiently low, then the multiple was set aside as

a likely candidate for one of the subsequences of the plaintext sequence. When n candidate χ2 scoring base class

multiples were obtained for an n× n block size, the search was halted and the cipher was deemed solved as these

n base class multiples assembled the plaintext. Ultimately, less than 0.5% of all possible base class multiples had

to be attempted, resulting in a reduction of necessary work by a factor of 400 to 500. For a text length of 1000,

all of the correct ‘p’ combinations were obtained 99.7%, 98.9% and 96.0% of the time for the 3 × 3, 4 × 4 and

5× 5 block size cases respectively. Additionally, it is not necessary for every row to be obtained, as it is possible

to reconstruct the plaintext with knowledge of all but one row. This reduction in work is a major improvement

over the φ(L) reduction from the Elizabethtown team and stands to be further reduced if the program is written

to run in a computer programming software that can run it over multiple computer cores.

The combination of use of plaintext, a sorted alphabet based upon commonly known frequencies and paral-

lelization over multiple subsequences led to a significant reduction in work necessary to perform cryptanalysis on

the Hill Cipher.
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