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Abstract 

 The invertebrates Hydra oligactis and Hydra vulgaris are valuable models for research 

on aging. H. oligactis show senescence after sexual reproduction is induced, reducing their 

lifespan to about 90 days, while H. vulgaris remain alive indefinitely. One possible explanation 

for the difference in lifespan is that H. oligactis have a less robust heat shock response than H. 

vulgaris. Among the proteins rapidly produced during the heat shock response are small heat 

shock proteins (sHSPs). Past research in our lab characterized expression of sHSP genes in H. 

vulgaris in the absence of heat shock. All five of the H. vulgaris sHSP genes examined were 

expressed in stem cells in adult H. vulgaris, suggesting a role in maintaining protein quality 

control in stem cells. The current project sought to determine whether sHSPs are also 

expressed in H. oligactis stem cells and if so, whether expression is maintained once sexual 

reproduction and aging are induced. Expression of a H. oligactis sHSP gene corresponding to 

one studied in H. vulgaris, sHSP2, was characterized using RNA in situ hybridization. Expression 

was examined in H. oligactis before and both 27 and 42 days after the induction of aging. We 

found that even after induction, H. oligactis show expression of sHSP2 in epithelial stem cells. 

This preliminary data provides evidence that sHSP2 is not critical for aging in H. oligactis.   

 

 

 

 

 

 



Introduction 

 Data suggest that Hydra vulgaris do not go through senescence (Schaible et al., 2015). 

Another species, Hydra oligactis, can stay alive for years when reproducing only asexually. 

However, when H. oligactis are induced to sexually reproduce, they undergo senescence and 

die within 90 days (Martínez & Bridge, 2012). One group of proteins whose regulation may help 

to explain the difference in lifespan between H. vulgaris and H. oligactis are heat shock 

proteins.  

Vital for dealing with stress is the heat shock response, which involves a rapid increase 

in transcription of heat shock protein genes (Brennecke et al., 1998; Haslbeck & Vierling, 2015). 

Heat shock proteins control levels of denatured proteins, by binding to unfolded proteins and 

allowing them to remain functional (Richter at al., 2010). The heat shock response can be 

induced by temperature, oxidative stress, and other environmental stressors, which lead to 

denaturation of proteins (Haslbeck & Vierling, 2015; Sami et al., 2017).  

It has been shown that H. oligactis have a poor heat shock response compared to H. 

vulgaris (Bosch et al., 1988; Brennecke et al., 1998). Preliminary data on the transcriptome of 

each species before and after thermal stress are consistent with these results; indicating that H. 

vulgaris have greater upregulation of genes in response to stress compared to H. oligactis 

(Nawrocki, personal communication). 

Therefore, the senescence might be explained by a decreased heat shock response in H. 

oligactis after induction to sexually reproduce. This claim is logical because a decreased heat 

shock response is associated with aging in different invertebrates, such as Caenorhabditis 

elegans and vertebrates, including humans (Calderwood et al., 2009). An increased lifespan has 



also been associated with greater expression of heat shock proteins (Calderwood et al., 2009). 

Specifically, C. elegans with elevated levels of heat shock factor 1, a transcription factor 

important for expression of heat shock proteins, have a longer lifespan (Calderwood et al., 

2009).  

One set of proteins that are part of the heat shock protein class are small heat shock 

proteins (sHSPs), which are found in Archaea, Bacteria, and Eukarya (Carra et al., 2017). These 

proteins have a N-terminal domain, a C-terminal sequence, and a conserved α-crystallin domain 

(Haslbeck & Vierling, 2015) These three domains play a role in the oligomerization of sHSPs, 

which regulates the activity of these proteins (Haslbeck & Vierling, 2015). sHSPs of hydra are 

unusual because they often have two α-crystallin domains instead of one (Nicosia et al., 2014). 

sHSPs act as molecular chaperones, binding to early unfolding intermediates of proteins 

(Haslbeck & Vierling, 2015). Protein aggregation harmful to cells can occur after misfolding due 

to exposure of hydrophobic amino acids to solvent (Sami et al., 2017). Activity of sHSPs can 

therefore both assure that proteins remain functional and protect cells from aggregation of 

misfolded proteins (Haslbeck & Vierling, 2015). As with other heat shock protein genes, 

transcription of small heat shock proteins increases during the heat shock response (Haslbeck & 

Vierling, 2015). Some sHSPs are expressed constitutively, in organisms not undergoing thermal 

stress (Sarkar et al., 2009). sHSPs expressed constitutively are present in a cell-type specific 

manner (Jagla et al., 2018).  

sHSP expression both before and after induced sexual reproduction has been 

characterized in both H. vulgaris and H. oligactis. There was work done specifically on the 

expression of sHSPs after thermal stress in both of these organisms. It was shown that three 



sHSPs have an increase in transcription after stress in H. vulgaris that have no change in 

expression in H. oligactis (Nawrocki, personal communication). This was not the case in the 

other two sHSPs investigated, sHSP2 and sHSP5, which had increased transcription in both 

species after stress (Nawrocki, personal communication). sHSP2, specifically, is unique in the 

fact that it is upregulated more due to thermal stress in non-aging H. oligactis then H. vulgaris. 

This protein has been shown to be expressed in the epithelial stem cells of the body column 

(Nawrocki, personal communication).  

These epithelial stem cells are present in the fairly simple body plan for a hydra. Hydra 

are a tube that have both a head and a foot on opposite sides (Bode, 1996). They are comprised 

of two epithelial layers, the ectoderm and the endoderm (Bode, 1996; Hobmayer et al., 2012). 

In the body column, epithelial cells act as stem cells, differentiating to produce cells of the 

tentacles or basal disk when they are displaced toward the ends of the body (Bode, 1996). The 

other stem cell system is the interstitial cells, which are present in between ectodermal cells, 

and give rise to neurons, gametes, secretory gland cells, and stinging cells (Bode, 1996).   

In the laboratory setting, H. vulgaris are able to live indefinitely (Schaible et al., 2015). H. 

oligactis, if they are not induced to sexually reproduce, can remain alive for years (Martínez & 

Bridge, 2012). H. oligactis become sexual (meaning they produce either eggs or testes) if they 

are in a 10 °C environment (Martínez & Bridge, 2012). A study by Yoshida and colleagues 

showed that when H. oligactis were moved to 10 °C they became sexual after approximately 

four weeks (Yoshida et al., 2006). Before the death of these hydra there are various 

physiological changes (Tomczyk et al., 2015). These include prey capture and the movement of 

food to the gastric cavity. Beyond physiological function, it has been shown that there is a 



decline in interstitial stem cells, which eventually leads to almost all of these cells not being 

present by day 30 of being sexually induced (Tomczyk et al., 2015).  

 One goal of this project was to determine whether sHSP2 shows similar expression in H. 

oligactis before induction of aging as in H. vulgaris, with expression in the body column where 

epithelial stem cells are present. A second goal was to determine whether H. oligactis showed a 

decrease in sHSP2 expression after induction of sexual reproduction and aging. It was expected 

that there would be decreased expression of sHSP2 in the Hydra oligactis induced to age 

compared to the non-aging Hydra oligactis.  

 

Materials & Methods 

Hydra Strains and Culture Conditions 

 The organisms used for this project were H. oligactis (Swiss male strain) and Hydra 

magnipapillata (Strain 105). Both strains consist of genetically identical animals produced 

through asexual reproduction. The hydra were fed freshly hatched brine shrimp 3 times a week 

and were cultured at a temperature of either 18 °C or 10 °C. They were maintained in hydra 

medium, which is composed of 1 mM CaCl2, 1.5 mM NaHCO3, 0.1 mM MgCl2, 0.08 mM MgSO4, 

and 0.03 mM KNO3. H. oligactis induced to reproduce and age were cultured for either 27 days 

or 42 days at 10 °C.  

 

Production of Labeled Probes for in situ hybridization 

 Twenty-five H. oligactis were used for the synthesis of cDNA. Animals were heat 

shocked for 25 minutes at 29 °C. The Qiagen RNeasy kit was used to isolate total RNA. First 



strand cDNA was produced from the total RNA with the Invitrogen Gene Racer Kit, using the 

GeneRacer Oligo dT Primer.  

 A 488 base pair portion of the sHSP2 gene was isolated using PCR, with the first strand 

cDNA as a template. Primers were designed based on H. oligactis sequence data kindly 

provided by Annalise Nawrocki, Pomona College. The sequence of the primers used were 5’ 

GGA CAA GTT CTC GAA GTA TGT GG 3’ and 5’ CTA TTC TTC CAT TTT GAT CTC AAG TTT GAG 3’. 

The PCR program used was as follows: 95 °C for 2 minutes, three initial cycles of 94 °C for 30 

seconds, 54 °C for 1 minute, and 68 °C for 2 minutes, followed by 30 cycles of 94 °C for 30 

seconds, 50 °C for 1 minute, 68 °C for 2 minutes, and 68 °C for 10 minutes before being held at 

4 °C.  

The PCR product was gel purified using the Qiagen QIAquick Gel Extraction kit and 

cloned using the Promega pGEM-T Easy Vector System.  

One-Shot Chemically Competent E. coli were transformed with the ligation reaction. 

Plasmid DNA was isolated using the Qiagen QIAprep Spin Miniprep kit.  

To produce the digoxygenin-labeled antisense probe, the plasmid was linearized by 

digestion with NcoI-HF. A phenol:chloroform extraction was performed to produce RNAse-free 

DNA. In vitro transcription was performed using the Roche DIG RNA Labeling kit, with Sp6 RNA 

polymerase. 

 

RNA in situ hybridization 



In situ hybridization was performed as described in Bridge et al., (2010), with an 

overnight pre-blocking step. As positive and negative controls, previously synthesized antisense 

(positive control) and sense (negative control) probes corresponding to an 891 base pair 

portion of the Hydra 

magnipapillata Hyzic gene 

were used. The Hyzic gene is 

expressed in differentiating 

nematocytes (Lindgens et al., 

2004). For the positive 

control, H. magnipapillata were used, since the antisense probe is complementary to the Hyzic 

mRNA for this species. For the negative control, the Hyzic sense probe should not be 

complementary to any 

mRNA. H. oligactis were used 

with this probe, so that any 

non-specific staining of H. 

oligactis tissue could be 

detected. The in situ hybridization procedure was performed twice, details are given in Tables 1 

and 2.  

The pictures for both in situ hybridizations were obtained using a Nikon Eclipse 80i light 

microscope. The software used for imaging was NIS-Elements.  

 

 

Table 1: The components for the first in situ hybridization.  

Animals used  Probe 

12 H. oligactis, 18 °C sHSP2 antisense 

12 H. oligactis, 10 °C for 27 
days 

sHSP2 antisense 

12 H. magnipapillata Hyzic antisense 

12 H. oligactis, 18 °C Hyzic sense 

12 H. oligactis, 10 °C for 27 
days 

Hyzic sense 

Table 2: The components for the second in situ hybridization. 

Animals used  Probe  

24 H. oligactis, 18 °C sHSP2 antisense 

12 H. oligactis, 10 °C for 42 
days 

sHSP2 antisense 

12 H. magnipapillata Hyzic antisense 

12 H. oligactis, 18 °C Hyzic sense 

12 H. oligactis, 10 °C for 42 
days 

Hyzic sense 



Results  

The positive control H. magnipapillata cultured with the Hyzic antisense probe showed 

the expected expression pattern (Figure 1) (Lindgens et al., 2004).  

In H. oligactis cultured at 18 °C, sHSP2 expression was detected in body column 

epithelial cells, as well as in the basal disk (Figure 2). Light expression was also seen at the bases 

of the tentacles. No expression was detected in most of the length of the tentacles.  

H. oligactis induced to age through incubation at 10 °C for 27 days showed sHSP2 

expression similar to the expression seen in non-aging animals. Staining was present in body 

column epithelial cells but not in tentacles (Figure 3). However, the basal disk staining seen in 

animals cultured at 18 °C was not present (Figures 3B, D). The negative control of H. oligactis 

incubated at 10 °C for 27 days showed staining in the testes. However, this pattern was distinct 

from the one produced by the sHSP2 antisense probe (Figures 3B-D).  

A B 

Figure 1: H. magnipapillata hybridized with a Hyzic antisense probe as a positive control. (A) 

Staining in a whole animal, 50X magnification. (B) Staining in a bud, 125X magnification.   



H. oligactis incubated at 10 °C for 42 days showed sHSP2 expression similar to that seen 

in animals incubated at 10 °C for 

the shorter period. Staining was 

present in body column epithelial 

cells but not in tentacles or in the 

basal disk (Figure 4). Of note, the 

basal disks of these aging H. 

oligactis were visibly larger than 

those of the H. oligactis 

maintained at 18 °C (Figures 1D, 

4D).  

 

 

 

 

 

 

 

 

 

A B 

C 

D 
Figure 2: sHSP2 expression in H. oligactis maintained at 

18 °C. (A) Negative control produced using a labeled 

probe with the same sequence as a portion of the H. 

magnipapillata Hyzic gene, 40X magnification. (B) 

Staining in a whole adult animal, 40X magnification. (C) 

Staining in the head region, 100X magnification. Arrow 

indicates tentacles. (D) Staining in the basal region, 100X 

magnification. Black arrow indicates the basal disk, and 

red arrow indicates the border between the ectoderm 

and endoderm layers.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: sHSP2 expression in Hydra oligactis incubated at 10 °C for 27 

days. (A) Negative control, showing background staining, 50X 

magnification. Arrows indicate testes. (B) Staining in a whole animal, 

50X magnification. Arrow indicates teste. (C) Staining in the head 

region, 125X magnification. Arrow indicates tentacles. (D) Staining in 

the basal region, 125X magnification. Black arrow indicates the basal 

disk, and red arrow indicates the border between the ectoderm and 

endoderm layers. 
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A 

B 

C D 

Figure 4: sHSP2 expression in H. oligactis incubated at 10 °C for 42 days. 

(A) Negative control, 40X magnification. (B) Staining in a whole animal, 

40X magnification. (C) Tentacle, 100X magnification. (D) Staining in the 

basal region, 100X magnification. Black arrow indicates the basal disk, 

and red arrow indicates the border between the ectoderm and 

endoderm layers. 



Discussion  

 The in situ hybridization procedures show that non-aging H. oligactis cultured at 18 °C 

have a pattern of sHSP2 expression similar to the expression patterns seen in the non-aging 

species H. vulgaris for sHSP2 and four other sHSP genes (Altares, personal communication; 

Graver, personal communication). Expression is not uniform within the body but is higher in 

epithelial stem cells of the body column than in the differentiated cells in the distal tentacles. 

As in H. vulgaris, the expression pattern of sHSP2 is consistent with a role in maintaining 

proteostasis and preventing harmful aggregation of denatured proteins in stem cells.  

Even though the overall sHSP2 expression pattern is similar in H. vulgaris and non-aging 

H. oligactis, a difference was observed in the H. oligactis pattern. Strong expression was 

detected in the ectoderm of the basal disk in H. oligactis cultured at 18 °C (Figure 2). One 

possible explanation for this could be a response to bacteria present on the surface of culture 

dishes. The expression of certain sHSPs has been shown to increase due to bacterial infection in 

various organisms, including channel catfish (Xie et al., 2015). sHSP2 might be upregulated in 

response to specific bacteria in a similar fashion, leading to the pattern shown in the 18 °C H. 

oligactis. The basal disk ectoderm is the point of contact with the substrate and therefore with 

bacteria growing on the substrate. This possibly could be further investigated by examining 

sHSP2 expression in H. oligactis grown at 18 °C in sterile culture dishes and by placing non-basal 

disk tissue, like tentacles, in contact with the surface of a normal H. oligactis glass culture dish.  

We found that expression of sHSP2 is maintained in the body column epithelial cells of 

H. oligactis once sexual reproduction and aging are induced. H. oligactis cultured at 10 °C for 



both 27 days and 42 days showed expression of the gene in body column epithelial cells (Figure 

3, 4). Complete loss of sHSP2 expression is thus not a feature of aging in H. oligactis. 

 One difference between the H. oligactis cultured at 18 °C and those cultured at 10 °C is 

that those at 18 °C showed slight expression of sHSP2 in the base of the tentacles while those 

cultured at 10 °C did not (Figure 2,3,4). This difference could be due to a higher rate of cell 

division in the body column in the H. oligactis at a higher temperature. An increased rate of cell 

division would be expected to displace cells into the tentacles more quickly (Bode, 1996). As 

cells pass into the tentacles and differentiate, sHSP2 mRNA might not be degraded until cells 

are in the distal region of the tentacles. In the 10 ° H. oligactis cell proliferation would be 

expected to be slower, leading to a slower rate of cell displacement into tentacles. This might 

allow degradation of sHSP2 mRNA at a more proximal position in the tentacles.  

 Of note, the hydra that were aging for 42 days appear to have an increased basal disk 

size compared to the 18 °C H. oligactis and the other 10 °C H. oligactis group (Figure 2,3,4). This 

morphological change has not been previously noted in aging H. oligactis. Along with this, the 

sHSP2 expression was altered by stopping higher up on the body column compared to the other 

two experimental groups. More information is needed to determine if an increased foot size is 

a physical change that accompanies aging in H. oligactis and, if it is, when it happens during the 

aging process.  

Besides the slight changes, there appears to be the similar expression of sHSP2 in the 

three experimental groups that received the sHSP2 probe. Therefore, loss of sHSP2 expression 

in stem cells does not appear to lead to aging in H. oligactis. This would need to be confirmed 

using qPCR on sHSP2, which would provide quantitative data. The role of sHSP2 could also be 



elucidated from creating transgenic hydra that express hairpin RNA for sHSP2 (Juliano et al., 

2014). Hairpin RNA causes knockdown of the gene of interest (Juliano et al., 2014). If the lack of 

sHSP2 leads to aging in H. oligactis, then that would provide evidence that sHSP2 does 

contribute to the process of aging. Transgenic hydra that increase the expression of sHSP2 

could also provide insight on the importance of sHSP2 in aging (Juliano et al., 2014).  

 In addition to sHSP2, other aspects of the heat shock response need to be explored as a 

possible explanation for aging in H. oligactis. This could possibly include another sHSP that has 

been looked at in both H. vulgaris and H. oligactis, sHSP5. This is the other sHSP that has been 

shown to be upregulated due to thermal stress in H. oligactis, so therefore it might be of 

significance in the heat shock response and aging.  
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