Elizabethtown College

JayScholar

Biology: Student Scholarship & Creative Works

Biology

Spring 2021

Effects on Bacterial Composition from Long-term Storage of Fecal Matter for Fecal Matter Transplant

Sabir Mali Elizabethtown College, malis@etown.edu

Debra Wohl Ph.D. Elizabethtown College, wohld@etown.edu

Follow this and additional works at: https://jayscholar.etown.edu/biostu

Part of the Biology Commons

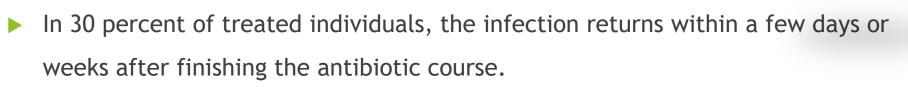
Recommended Citation

Mali, Sabir and Wohl, Debra Ph.D., "Effects on Bacterial Composition from Long-term Storage of Fecal Matter for Fecal Matter Transplant" (2021). *Biology: Student Scholarship & Creative Works*. 14. https://jayscholar.etown.edu/biostu/14

This Presentation is brought to you for free and open access by the Biology at JayScholar. It has been accepted for inclusion in Biology: Student Scholarship & Creative Works by an authorized administrator of JayScholar. For more information, please contact kralls@etown.edu.

Effects on Bacterial Composition from Long-term Storage of Fecal Matter for Fecal Matter Transplant

Sabir Mali, Debra Wohl Ph.D. Elizabethtown College


Clostridium difficile (C. diff)

- Half a million infections in the United States each year, with an estimated 15,000 deaths.
- Symptoms include:
 - Severe diarrhea
 - ► Fever
 - Inflammation of the colon
- Risk factors:
 - According to CDC, 80 percent of the deaths associated with C. difficile occurred among Americans aged 65 years or older.
- In most cases C. diff infections occur when taking antibiotics for an extended period.
 - Lead to gastrointestinal dysbiosis, enabling opportunistic bacteria such as Clostridium difficile to cause infection.

What is Fecal Matter Transplant (FMT)?

- Transplanting stool from a healthy donor into the gastrointestinal tract of a patient.
 - ▶ To restore balance of bacteria in their gut.
- Also known as Bacteriotherapy.

Stool Banks

- For easy access to stool samples, many stool banks such OpenBiome have emerged to provide stool samples.
- Stool banks safely collect, store, and distribute stool product for treatment of Clostridium difficile infections.
- Stored donor stool samples are mixed with a glycerol buffer and stored at -80 °C, for a maximum of two years.
- There lack studies examining the bacterial composition, for such long-term storage, for fecal matter.

This Study

- This study aimed to compare the effects of freezing time on the composition of bacteria.
 - Find out if long-term freezing impacts bacterial composition.
 - > Done using fecal matter obtained from dogs (*Canis lupus familiaris*).
- Null Hypothesis:
 - If all the samples were to be freezed at -80°C, whether for long-term or shortterm, then the bacterial composition will not change, as all the samples will look similar to the original sample (t=0).

Alternative Hypothesis

- If freezing or/and thawing impacts fecal matter composition, bacteria composition will appear similar for times 1 months, 1 year, and 2 years but will be different from the original composition (t=0).
- 2. If long-term storage in a freezer impacts bacterial composition then the diversity among the sample will vary, where the diversity in sample t=0 will be different from the other samples.

Procedure

- DNA was extracted from fecal sample stored for 2 years.
- Extracted DNA samples from the following times were obtained.
 - ▶ t=0
 - ▶ 1 month
 - ► 1 year
- The V4 of 16S region of rRNA was amplified using PCR and sequenced, for all samples.
- Data were analyzed for changes in microbial composition across time using Qiime (Quantitative Insights Into Microbial Ecology).

Data: Phred Score

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

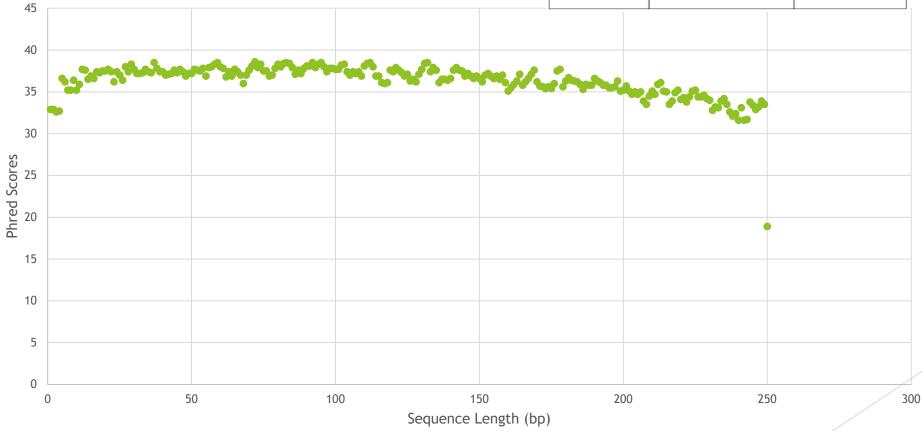


Figure 1. Phred Score for each base pair/nucleotide for 250 base pairs for all sequences.

Data: Number of Sequences

Number of Sequences Per Sample						
Sample Time	Number of Sequences					
T=0	65,327					
1 Month	85,757					
1 Year	104,831					
2 Year	86,701					

Table 1. Number of sequences after 249 base pair trim, for each samples (t=0, 1 month, 1 year, and 2 year).

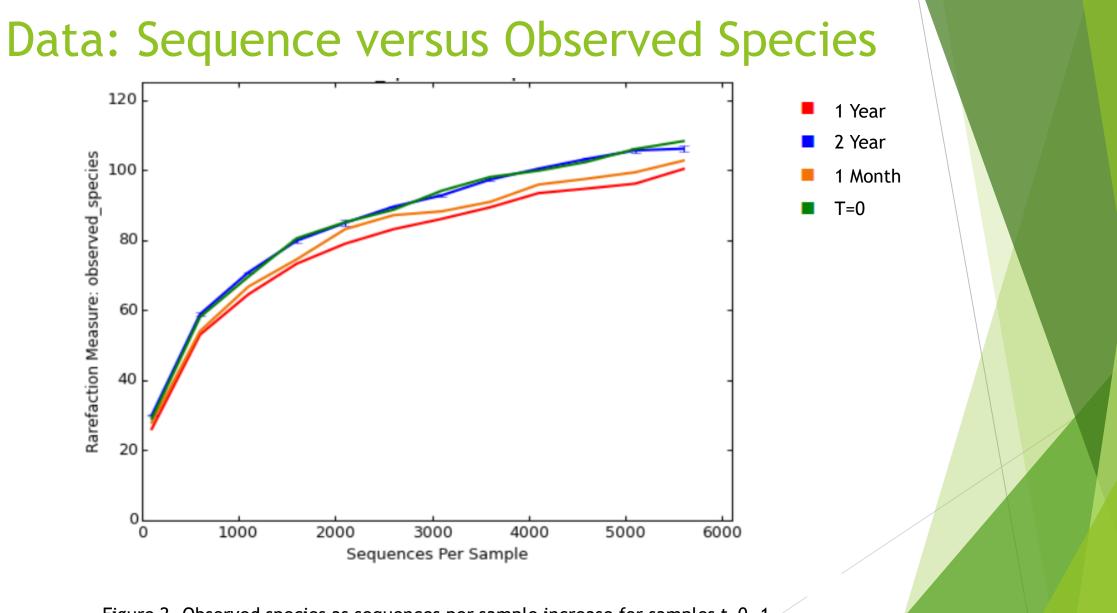


Figure 2. Observed species as sequences per sample increase for samples t=0, 1 month, 1 month, and 2 years.

Results: Rank (Phylum)

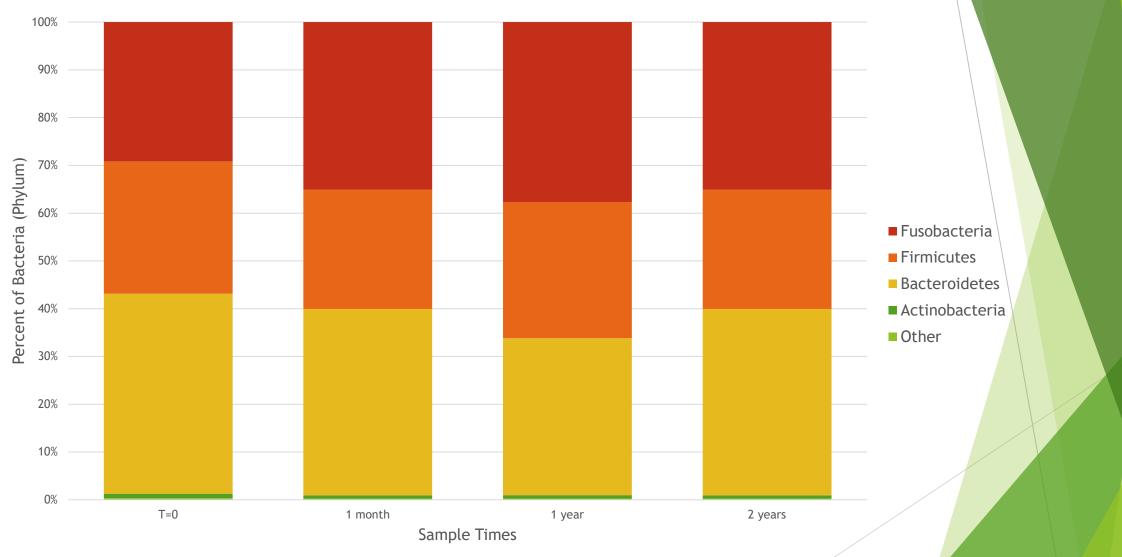


Figure 3. Percent of Bacteria in the Phylum bacteria Taxonomy for each samples.

Bacterial Taxonomy

		Domain	(Domains)			
		Kingdom	(Kingdoms	6)		
		Phylu	m (Phyla)			
		Class	(Classes)			
		Order	(Orders)			
		Family	(Families)			
		Genus	(Genera)			
		Species	s (Species)			

Figure 4. Chart showcasing different taxonomic ranks for classifying an organism; in this case bacteria.

Rank (Family)

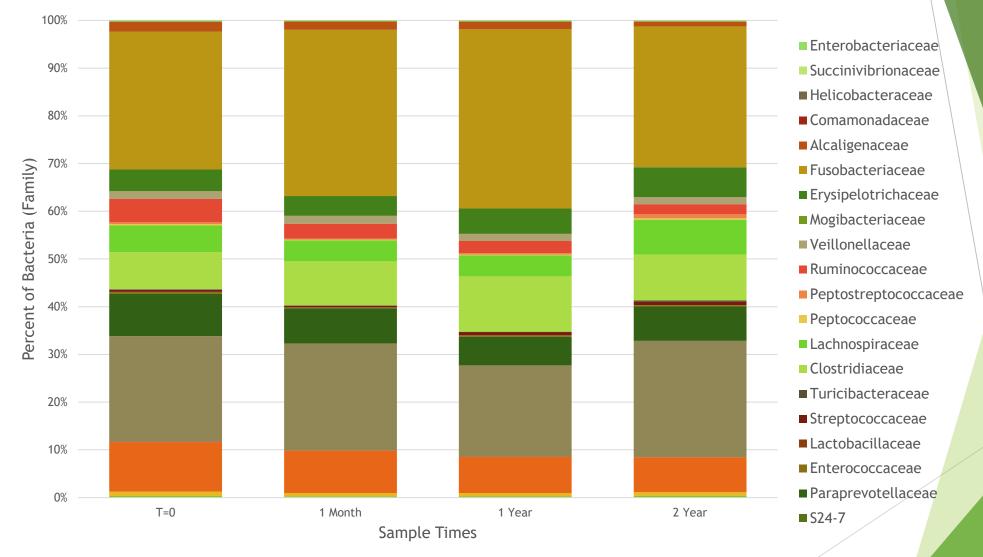


Figure 5. Percent of bacteria in the family taxonomy for each samples.

Discussion

- > The Phred score for the number of nucleotides had a score of 35 and above.
 - This suggests the identification of the nucleobases generated by automated DNA sequencing was correct 99.99% of the time.
- For the number of sequencing per sample, times 1 year had a relatively high number of sequences, where t=0 was low.
 - The extracted sample size varied due to different people extracting the DNA with different amounts fecal matter samples.
- From the data, there were no significant changes to the bacterial composition after the following period of storage.

Discussion

- Three primary bacteria present in the Phylum level were the Bacteroidetes, Fusobacteria, and Firmicutes.
- According to Abdallah et al., these bacteria are found in abundant amounts in gut.
 - Bacteroidetes help digest carbohydrates via a series of metabolic pathways. Also, possess genes that encode enzyme to break down starch.
 - Firmicutes are well known to produce butyrate which is a fatty acid that supports both immune regulation as well as proper functioning of our intestinal lining.
 - Fusobacteria activate host inflammatory responses designed to protect against pathogens.

Discussion

- At the family rank, Fusobacteriaceae, Prevotellaceae, and Clostridiales were found to be the most abundant.
 - **Fusobacteriaceae** produce organic acids to which are important for metabolism.
 - Prevotellaceae play an important role in human microbiota as they help breakdown protein and carbohydrate from food.
 - Clostridiales biosynthesis and release of serotonin.
- The observed species over sequences per sample graph showed a positive relationship.
 - ▶ The 2 year sample versus the t=0 sample were almost identical.

Conclusion

- From the results, we failed to reject the null hypothesis.
 - There was little change from freezing to the bacteria composition, relative percent of the bacteria, and the diversity from freezing, among all samples.
- Therefore, the data from the study showed promising results for fecal matter transplant, if one wishes to use stool bank donor samples stored for up to 2 years.

Future Studies

Performing a similar study but using human fecal matter should yield more accurate representation of the human flora.

A study looking at the maximum period of bacterial storage until the bacteria composition is affected.

Acknowledgments

> Dr. Bridge's dogs: Bart and Ernestine

- <image>
- Earlier research students who did some of this work Yanellis Bonano, Cecelia Martin
- Elizabethtown College & Department of Biological & Environmental Sciences for funding

Thank you

Questions?