Computational Analysis of Steel Joists at Elevated Temperatures

Elle Shatto

Elizabethtown College, shattoe@etown.edu

Follow this and additional works at: https://jayscholar.etown.edu/landmark

Part of the Engineering Commons

Recommended Citation
https://jayscholar.etown.edu/landmark/2019/july11/14

This Event is brought to you for free and open access by the Programs and Events at JayScholar. It has been accepted for inclusion in Landmark Conference Summer Research Symposium by an authorized administrator of JayScholar. For more information, please contact kralls@etown.edu.
Computational Analysis of Steel Joists at Elevated Temperatures

Elle E. Shatto
Civil and Environmental Engineering Major, Class of 2020

Faculty Mentor: Dr. Jean Batista Abreu, Assistant Professor of Engineering
Steel Joists

- Joist - horizontal structural member typically used to support a floor or ceiling
- Type - Lipped Channel Section Joists (C-Section Joists)
- Modeling Program - Abaqus
Currently: Steel joist are tested experimentally by subjecting them to standard time-temperature fire curves

Limitations:

- Tests are expensive
- Limited number of joist configurations
- Barely represent loading and support conditions of steel joists in a building
- Impossible to estimate the performance produced by real fires

Goal: Use computational tools to analyze steel joist behavior under fire
Experimental Testing

- Experimental tests conducted on a frame flooring system
- Flooring consisted of 4 joists, 2 tracks, plasterboard, and plywood
- Target load of 9 kN was applied to each joist
- A furnace created fire conditions based on standard fire curve
- Temperature, lateral deflection, and failure time were recorded
Experimental Results
Abaqus Model Criteria

- **Joist Dimensions**: 180 x 40 x 15 x 1.15 mm
- **Material Properties**:
 - Modeled as changing due to temperature except Poisson’s Ratio which remains constant
- **Boundary Conditions**:
 - Model based on connections to plasterboard and plywood
- **Load**: 9 kN was uniformly distributed
- **Temperature**: Modeled after experimental results
Model Results

- The Abaqus Steel Joist Model produces results that are similar to the results produced from the experimental testing.
- The error between the experimental and model results was calculated to be 5% or less.

Failure Results

<table>
<thead>
<tr>
<th>Type</th>
<th>Experimental Results</th>
<th>Model Results</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (minutes)</td>
<td>107</td>
<td>107.697</td>
<td>1%</td>
</tr>
<tr>
<td>Temperature</td>
<td>450, 400, 340</td>
<td>459.233</td>
<td>2%</td>
</tr>
<tr>
<td>Lateral Deflection (in)</td>
<td>0.967041516</td>
<td>1.01128</td>
<td>5%</td>
</tr>
<tr>
<td>Slope of Deflection</td>
<td>0.014629383</td>
<td>0.014704056</td>
<td>1%</td>
</tr>
</tbody>
</table>
Parametric Study

- Goal: To observe how each parameter affects the model and the results
- Conducted six parametric studies

Main Parameters:
- Material Properties - Poisson’s Ratio and Thermal Expansion Coefficient
 - Compare results with constant and varying values
- Changing the length of joist
Parametric Study Results

Material Properties Study

<table>
<thead>
<tr>
<th>Type</th>
<th>Abaqus Model Results</th>
<th>Poisson's Ratio Results</th>
<th>% Difference</th>
<th>Thermal Expansion Coefficient</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (minutes)</td>
<td>107.697</td>
<td>107.709</td>
<td>0%</td>
<td>108</td>
<td>0%</td>
</tr>
<tr>
<td>Temperature</td>
<td>459.233</td>
<td>459.367</td>
<td>0%</td>
<td>462.624</td>
<td>1%</td>
</tr>
<tr>
<td>Lateral Deflection (in)</td>
<td>1.01128</td>
<td>1.06816</td>
<td>5%</td>
<td>0.888062</td>
<td>13%</td>
</tr>
<tr>
<td>Stress</td>
<td>88.6983</td>
<td>87.9985</td>
<td>1%</td>
<td>86.7214</td>
<td>2%</td>
</tr>
</tbody>
</table>

Length Study

<table>
<thead>
<tr>
<th>Type</th>
<th>Original Length 2400mm</th>
<th>Length 1500mm</th>
<th>Length 1000mm</th>
<th>Length 500mm</th>
<th>Length 3000mm</th>
<th>Length 3500mm</th>
<th>Length 4000mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (minutes)</td>
<td>107.697</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>87.0036</td>
<td>83.0564</td>
<td>77.1088</td>
</tr>
<tr>
<td>Temperature</td>
<td>459.233</td>
<td>462.624</td>
<td>462.624</td>
<td>462.624</td>
<td>326.797</td>
<td>296.813</td>
<td>263.327</td>
</tr>
<tr>
<td>Lateral Deflection (in)</td>
<td>1.01128</td>
<td>0.843906</td>
<td>0.585979</td>
<td>0.486279</td>
<td>0.88673</td>
<td>0.882696</td>
<td>0.838699</td>
</tr>
<tr>
<td>Stress</td>
<td>88.6983</td>
<td>86.31</td>
<td>71.79</td>
<td>65.6676</td>
<td>100.15</td>
<td>100.291</td>
<td>100.137</td>
</tr>
</tbody>
</table>
Experimental vs. Computational Study:
- Abaqus can accurately model steel joists under fire conditions
 - Prevents spending money for experimental testing
 - More joist configurations can be tested
 - Provides an easier method to model steel joists under fire

Parametric Study:
- Thermal Expansion Coefficient must vary with temperature to provide accurate results
- The length of the joist effects how and when it fails under fire
References

