A Nonlinear Latching Filter to Remove Jitter from Movement Estimates for Prostheses

Jacob Nieveen, The University of Utah
Mark Brinton, Elizabethtown College
David J. Warren, The University of Utah
V. John Mathews, Oregon State University


Continuous movement intent decoders are critical for precise control of hand and wrist prostheses. Noise in biological signals (e.g., myoelectric or neural signals) can lead to undesirable jitter in the output of these types of decoders. A low-pass filter (LPF) at the output of the decoder effectively reduces jitter, but also substantially slows intended movements. This paper introduces an alternative, the latching filter (LF), a recursive, nonlinear filter that provides smoothing of small-amplitude jitter but allows quick changes to its output in response to large input changes. The performance of a Kalman filter (KF) decoder smoothed with an LF is compared with that of both an KF decoder without an additional smoother and a KF decoder smoothed with a LPF. These three algorithms were tested in real-time on target holding and target reaching tasks using surface electromyographic signals recorded from 5 non-amputee subjects, and intramuscular electromyographic and peripheral neural signals recorded from an amputee subject. When compared with the LPF, the LF provided a statistically significant improvement in amputee and non-amputee subjects' ability to hold the hand steady at requested positions and achieve movement goals faster. The KF decoder with LF provided a statistically significant improvement in all subjects' ability to hold the prosthetic hand steady, with only slightly lower speeds, when compared to the unsmoothed KF.