Context cuedependent saccadic adaptation in rhesus macaques cannot be elicited using color

Aaron L. Cecala, Elizabethtown College
Ivan Smalianchuk, University of Pittsburgh
Sanjeev B. Khanna, University of Pittsburgh
Matthew A. Smith, University of Pittsburgh
Neeraj J. Gandhi, University of Pittsburgh


When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys.