Listeria monocytogenes at the human–wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria

Cameron Parsons, NC State University
Jeff Niedermeyer, NC State University
Nicholas Gould, NC State University
Phillip Brown, NC State University
Jennifer Strules, NC State University
Arielle W. Parsons, NC State University
J. Bernardo Mesa-Cruz, Virginia Polytechnic Institute and State University
Marcella J. Kelly, Virginia Polytechnic Institute and State University
Michael J. Hooker, University of Georgia
Michael J. Chamberlain, University of Georgia
Colleen Olfenbuttel, North Carolina Wildlife Resources Commission
Christopher DePerno, NC State University
Sophia Kathariou, NC State University

Abstract

Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human–wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of L. monocytogenes and highlight the public health significance of the human–wildlife interface.