Title
Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids
Document Type
Article
Publication Title
Chemistry - A European Journal
Publication Date
3-21-2019
Abstract
The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pK a of 2-aminopyridine (M). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA–dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M-modified PNA–dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs.
Volume
25
Issue
17
First Page
4367
Last Page
4372
DOI
10.1002/chem.201806293
ISSN
09476539
E-ISSN
15213765
PubMed ID
30746843
Recommended Citation
Kotikam, Venubabu; Kennedy, Scott D.; MacKay, James A.; and Rozners, Eriks, "Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids" (2019). Faculty Publications. 913.
https://jayscholar.etown.edu/facpubharvest/913